传统的阈值分割方法在高重复性实验中存在诸多局限,特别是参数需要频繁调整以适应不同的实验条件。采用Cellpose模型能够有效缓解这些问题。在分割过程中,输入数据采用DD、DA和AA三个通道图像。通过AA、DA和DD通道提取FI荧光通道信息,同时利用ED通道获取ED FRET效率图像信息,并通过BF_1、BF_2和BF_3通道提取明场BF图像信息。最终,利用主成分分析(PCA)将明场信息降维至一维,以便更清晰地查看信息状态。
传统的阈值分割方法在高重复性实验中存在诸多局限,特别是参数需要频繁调整以适应不同的实验条件。采用Cellpose模型能够有效缓解这些问题。在分割过程中,输入数据采用DD、DA和AA三个通道图像。通过AA、DA和DD通道提取FI荧光通道信息,同时利用ED通道获取ED FRET效率图像信息,并通过BF_1、BF_2和BF_3通道提取明场BF图像信息。最终,利用主成分分析(PCA)将明场信息降维至一维,以便更清晰地查看信息状态。