- 博客(16)
- 收藏
- 关注
原创 深度学习之张量
PyTorch张量操作指南 本文系统介绍了PyTorch张量的核心概念与操作。张量是多维数组,支持标量、向量、矩阵及更高维数据。关键特性包括动态计算图、GPU加速和自动微分。文章详细讲解了张量的创建方法(torch.tensor/Tensor区别)、类型转换、设备切换以及与NumPy的互操作。重点阐述了形状变换操作(reshape/view/transpose)、广播机制和自动微分原理,包括梯度计算、反向传播和梯度控制。还介绍了线性/随机张量生成、内存连续性判断等实用技巧,为深度学习开发提供了全面的张量操作
2025-08-09 16:05:16
1191
原创 机器学习核心算法与实践要素(全篇)
本文全面介绍了机器学习的基础概念、算法及应用。主要内容包括:1. 学习分类:监督学习(回归与分类)、半监督学习、无监督学习(聚类与降维)和强化学习;2. 常用工具:重点讲解scikit-learn库的安装、数据集加载与划分方法;3. 特征工程:涵盖特征提取、无量纲化(归一化与标准化)、特征降维(方差过滤、相关系数、主成分分析);4. 核心算法:K近邻、朴素贝叶斯、决策树、随机森林等分类算法,以及线性回归、岭回归、逻辑回归等回归算法;5. 模型优化:交叉验证、超参数搜索、正则化方法;6. 无监督学习方法
2025-08-07 18:55:06
1107
原创 OpenCV 图像处理核心技术:直方图均衡化、模板匹配、霍夫变换、图像亮度变换以及形态学变换等操作
本文系统介绍了五种图像处理技术:1. 直方图均衡化技术(包括自适应和对比度受限方法),用于增强图像对比度;2. 模板匹配方法,实现目标检测定位;3. 霍夫变换(直线/圆检测),用于几何形状识别;4. 图像亮度调整技术(线性变换和像素修改);5. 形态学变换(腐蚀、膨胀、开闭运算等)及其在二值图像处理中的应用。文章通过Python+OpenCV代码示例,详细说明了每种技术的实现原理、参数设置和应用场景,为读者提供了实用的图像处理技术指南。
2025-07-31 20:06:26
696
原创 图像边缘与轮廓分析:从梯度检测到特征提取
本文介绍了图像处理中边缘检测和轮廓提取的关键技术。首先阐述了图像梯度的概念及Sobel、Laplacian算子的应用方法,包括垂直/水平边缘提取和二阶导数检测。详细讲解了Canny边缘检测的实现步骤:高斯滤波去噪、梯度计算、非极大值抑制和双阈值筛选。在轮廓处理方面,介绍了轮廓定义、查找方法(RETR_EXTERNAL等模式)和绘制技巧,重点说明了凸包检测的两种算法(穷举法和QuickHull)及其实现流程。最后讲解了轮廓特征提取技术,包括外接矩形和最小外接矩形的获取方法。
2025-07-25 20:38:21
707
原创 Opencv 图像编辑与增强技术
本文介绍了OpenCV中的图像处理核心技术,主要包括插值算法、透视变换、颜色处理和水印添加等方法。在插值算法部分,详细讲解了最近邻、双线性、双三次和Lanczos等不同插值方法的原理与应用场景。透视变换部分阐述了如何通过控制点实现视角转换。此外,还介绍了图像掩膜操作、颜色替换技巧,以及利用二值化处理实现水印添加的具体步骤。最后讲解了各种滤波算法(均值、高斯、中值、双边等)在图像降噪中的应用及其特点。这些技术为图像处理和计算机视觉任务提供了基础工具和方法。
2025-07-24 20:26:26
1080
原创 opencv图像变换核心操作
本文介绍了OpenCV图像处理的基本操作,主要包括:1)颜色转换,包括图像相加的饱和操作与加权加法;2)灰度化处理的三种方法(最大值法、平均值法、加权均值法);3)多种二值化方法(阈值法、OTSU算法、自适应二值化等);4)图像翻转操作(垂直、水平、水平垂直);5)仿射变换(旋转、平移、缩放)。文中详细说明了各种操作的原理、实现代码及参数设置,并配有示例图片展示处理效果。这些基础操作为后续更复杂的图像处理任务奠定了基础,适合OpenCV初学者学习参考。
2025-07-23 20:22:00
624
原创 opencv图像基础-下载安装与基本操作
本文介绍了OpenCV库的安装与基本操作。首先说明在虚拟环境中使用清华源加速安装的方法,推荐导入时使用"import cv2 as cv"别名。接着详细讲解了6个核心操作:1)图像基础处理与颜色空间转换;2)使用NumPy创建黑白图像及随机像素;3)调整图像尺寸;4)通过画图工具定位像素实现图像剪切;5)绘制直线、矩形和圆形;6)视频读取与摄像头调用技巧。每个操作均配有实现要点说明,强调像素定位、窗口命名等关键细节,最后提供手动退出视频读取的示例代码。分步演示帮助读者快速掌握Opencv
2025-07-22 20:05:37
935
原创 模块化编程概念(模块、包、导入)及常见系统模块总结和第三方模块管理
本文介绍了Python模块化编程的概念与实践。模块化编程通过将代码分解为独立可复用的模块(.py文件)和包(包含__init__.py的目录),使用import机制实现代码组织。重点讲解了Python标准库中的常用模块(如os、sys、math、datetime等)及其核心功能,并详细说明了第三方模块的管理方法,包括pip工具的使用、requirements.txt依赖管理以及虚拟环境配置。文章还列举了numpy、pandas等常用第三方模块,强调了模块化编程在提升代码可维护性、复用性和协作效率方面的重要性
2025-07-18 19:07:18
617
原创 迭代器和生成器的区别及其各自实现方式和使用场景
本文对比了迭代器和生成器的特性与使用场景。迭代器是通过类实现的,需要手动定义__iter__和__next__方法,适合需要复杂遍历逻辑或状态管理的场景。生成器则通过函数和yield关键字实现,自动保存执行状态,代码更简洁,适合处理数据流或无限序列。两者都支持惰性计算,但生成器内存占用更优。关键区别在于:所有生成器都是迭代器,但反之不成立;生成器适合一次性遍历,迭代器可支持多次遍历(需重新实例化)。选择使用时需根据具体需求权衡代码简洁性和灵活性。
2025-07-17 19:40:19
692
原创 类和对象的基本概念及属性和方法的常见分类和使用场景
本文介绍了面向对象编程中类与对象的核心概念。类作为抽象模板定义了对象的结构(属性和方法),对象是类的具体实例。详细讲解了属性的三种类型:实例属性(对象独有)、类属性(共享)、私有属性(以__开头封装);以及方法的四种类型:实例方法、类方法(@classmethod)、静态方法(@staticmethod)和魔术方法(如__init__)。通过Employee类示例展示了综合应用场景,包括属性访问控制和方法使用。文章最后总结了不同属性和方法的适用场景,为面向对象编程提供了实用参考。
2025-07-16 19:35:39
756
原创 递归函数及装饰器函数
摘要:本文介绍了递归函数和Python装饰器的核心概念与应用。递归部分阐述了基本结构(终止条件和递归调用),并以阶乘和斐波那契数列为例说明实现方法,同时指出递归的注意事项。装饰器部分详细讲解了基本装饰器、带参装饰器、装饰器链和类装饰器的实现原理及典型应用场景(如日志记录、权限验证等),特别强调了装饰器的执行顺序和实际使用中的注意事项。最后提示读者合理使用这些技术特性,避免常见陷阱。全文通过代码示例直观展示技术要点,具有实用参考价值。
2025-07-15 19:33:43
691
原创 函数的位置传参、关键词传参及其可变性和解包操作
Python函数参数传递机制解析:主要介绍位置传参和关键词传参两种方式,以及参数的默认值设置。重点讲解可变参数处理,包括*args(可变位置参数形成元组)和kwargs(可变关键词参数形成字典)的使用方法,并演示二者组合应用的场景。同时介绍了函数调用时的参数解包操作(*和**的用法)。
2025-07-14 19:44:18
903
原创 Python 推导式及常见语句和内置函数总结
Python 推导式是一种简洁而强大的工具,用于从其他数据结构中创建新列表字典集合或生成器。它们通常用于对现有数据进行转换、过滤或计算。下面是一些常见的推导式类型以及一些内置函数和常见语句的总结。
2025-07-11 20:15:21
806
原创 复合类型之序列类型、映射类型和集合类型总结
映射类型以键值对(key-value)形式存储数据,键唯一且不可变集合(Set)是一种无序且不重复的数据结构,常用于成员检测去重或数学运算(如并集、交集)。在Python中,集合分为可变集合set)和不可变集合frozenset3.2特性唯一性:自动去重,元素不可重复。无序性:无索引,不可通过位置访问。操作:支持并集()、交集()、差集()等运算。特性序列类型映射类型集合类型有序性有序无序无序元素唯一性可重复键唯一元素唯一可变性列表可变字典可变集合可变典型用途线性数据存储键值关联存储。
2025-07-10 19:43:22
869
原创 Python 基础变量类型之字符串和数字类型
主要作用: 字符串(str)是 Python 中最常用的数据类型之一,用于表示文本信息。字符串可以用单引号(')、双引号(")或三引号(''' 或 """)定义。 例如下列操作:1.2字符串的基本操作1.1.1字符串拼接、切片 字符串支持多种操作,例如拼接(连接两个字符串)、切片(指定输出的范围)、格式化等。拼接可以使用 运算符,切片使用 (通常默认步长step=1,如果没有给出start和end的具体范围,依旧默认从头开始到结束一一遍历)语法。
2025-07-09 19:21:56
767
原创 Pycharm、Anaconda开发环境以及相关库的下载与配置
安装时建议安装在D盘已经提前创建好的一个文件中,因为后续需要下载很多需要使用的库,较多且较大时容易将C盘整红,所以建议装在D盘!
2025-07-08 19:53:59
1037
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅