图像识别技术与应用-Pytorch数据处理工具箱

一. Pytorch数据处理工具箱

数据处理箱概述

1. torch.utils.data:
Dataset类:有 __getitem__ 和 __len__ 两个成员方法,用于构建自定义数据集。
DataLoader:可批量、并行加载数据集。
Random_split:随机划分数据。
Sampler:负责数据采样。
torchvision:包含计算机视觉常用数据集(如MNIST、CIFAR10 )和现代网络模型(如AlexNet ), transforms.compose 用于数据处理, utils.make_grid 和 utils.save_image 用于拼图和保存图。
2.torch.tensorboard:
是PyTorch较高版本推荐使用的可视化工具。
可可视化神经网络结构图、神经网络每一层的特征图以及损失值。

3.utis.dta

3.1 Dataset:

(1)_len_:提供数据大小

(2)_getitem_:通过给定索引获取数据,标签或一个样本

DataLoader:定义一个新的迭代器,实现批量读取 

utils.data.Dataset:

DataLoader:可以批量处理。 语法结构如图所示。

相关参数介绍如下

dataset

加载的数据集。

batch_size

批大小。

shuffle

是否将数据打乱。

sampler

样本抽样。

num_workers

使用多进程加载的进程数,0代表不使用多进程。

collate_fn

如何将多个样本数据拼接成一个batch,一般使用默认的拼接方式即可。

pin_memory

是否将数据保存在锁页内存(pin memory区),其中的数据转到GPU会快一些。

drop_last

dataset 中的数据个数可能不是 batch_size的整数倍,drop_lastTrue会将多出来不足一个b

atch的数据丢弃。

DataLoader:可以批量处理

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值