数据的决策分析及可视化

本文我们使用具体的题目来进行数据的决策分析及可视化,通过构建数学模型、编写Python代码进行计算,并利用数据可视化技术直观展示分析结果,为决策提供科学依据。

一、问题背景与模型构建

以新能源汽车厂商生产线升级方案选择为例,厂商面临三个不同的升级方案,每个方案都有不同的生产线投资成本、单车生产成本、预期年销量和销售单价。目标是通过计算各方案的年利润,选择出利润最高的方案。

为了解决这个问题,我们构建了年利润计算模型:

利润 = (销售单价 - 单车成本) × 年销量 - 生产线投资

这个模型考虑了销售单价、单车成本、年销量和生产线投资四个关键因素,能够全面反映各方案的经济效益。

方案生产线投资(万元)单车成本(万元)年销量(万辆)销售单价(万元)
方案A800016.51.222
方案B950015.81.222
方案C1100015.01.222

import matplotlib.pyplot as plt
import numpy as np

# 数据定义
schemes = ['方案A', '方案B', '方案C']
investments = [8000, 9500, 11000]  # 单位:万元
costs = [16.5, 15.8, 15.0]          # 单位:万元
sales = [1.2, 1.2, 1.2]             # 单位:万辆
price = 22                           # 单位:万元

# 计算利润(修正单位换算)
profits = []
for i in range(len(schemes)):
    # 统一单位换算(万元→元,万辆→辆)
    investment = investments[i] * 10000  # 生产线投资转元
    cost = costs[i] * 10000              # 单车成本转元
    quantity = sales[i] * 10000          # 年销量转辆
    
    # 利润计算公式
    profit = (price * 10000 - cost) * quantity - investment
    profits.append(profit)

# 寻找最优方案
best_scheme = schemes[np.argmax(profits)]
max_profit = max(profits)

# 可视化配置
plt.figure(figsize=(10, 6))
bars = plt.bar(schemes, profits, color=['#1f77b4', '#2ca02c', '#d62728'])  # 定义颜色
plt.title('新能源汽车生产线升级方案利润对比', fontsize=14, pad=20)
plt.xlabel('升级方案', fontsize=12, labelpad=10)
plt.ylabel('年利润(元)', fontsize=12, labelpad=10)
plt.axhline(y=0, color='black', linewidth=0.8, linestyle='--')  # 添加虚线基线

# 数据标签配置
for bar in bars:
    height = bar.get_height()
    plt.text(
        bar.get_x() + bar.get_width()/2,  # 水平居中
        height + 50000000,                # 垂直偏移量
        f'{height/100000000:.1f}亿',      # 数值格式化
        ha='center', 
        va='bottom',
        fontsize=9
    )

# 高亮最优方案
best_bar = bars[np.argmax(profits)]
best_bar.set_color('gold')
plt.text(
    best_bar.get_x() + best_bar.get_width()/2,
    max_profit + 150000000,
    '最优方案',
    ha='center',
    color='gold',
    fontweight='bold',
    fontsize=11,
    bbox=dict(facecolor='white', alpha=0.8, edgecolor='gold', boxstyle='round,pad=0.4')  # 添加文字背景框
)

# 图表优化
plt.ylim(-200000000, 600000000)  # 固定Y轴范围
plt.grid(axis='y', linestyle='--', alpha=0.7)  # 添加横向网格线
plt.tight_layout()

# 输出结果
print(f"计算结果:\n{best_scheme} 年利润最高,为 {max_profit/100000000:.1f} 亿元")

# 保存图表
plt.savefig('./profit_comparison_final.png', dpi=300, bbox_inches='tight')

计算结果:
方案C 年利润最高,为 7.3 亿元

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值