基于Python高校岗位招聘和分析平台 计算机毕设选题推荐 计算机毕设选题讲解 毕设带做 适合作为毕业设计 课程设计 项目实战 附源码+安装部署+文档指导

🚀🚀新河代码客
🚀🚀个人介绍:专业于Java、Python等编程语言,精通大数据分析、小程序开发、安卓应用设计、深度学习研究、网络爬虫技术、网站建设、Golang编程以及大屏展示项目。
🚀🚀提供开发、定制、代做、设计和文档指导服务,助您轻松解决技术难题!
🚀🚀有任何技术问题或需求,欢迎在评论区交流。感谢大家的点赞、收藏和关注!
🚀🚀更多交流,欢迎访问博主的主页个人空间。
Java实战 | SpringBoot/SSM
Python实战项目 | Django
微信小程序/安卓实战项目
大数据实战项目

⚡⚡文末获取源码

高校岗位招聘和分析平台-研究背景

近年来,随着高等教育的普及,高校毕业生数量逐年攀升,就业形势日益严峻。高校学生面临着巨大的就业压力,而高校也承担着促进学生就业的重要责任。传统的就业信息发布和招聘模式,如线下招聘会、公告栏信息等,存在着信息更新不及时、覆盖面窄、效率低下等问题,难以满足学生和企业的双向需求。因此,构建一个高效、便捷、智能的高校岗位招聘和分析平台显得尤为重要。

目前,市场上已存在一些招聘平台,但它们往往存在以下问题:一是针对性不强,难以满足高校学生群体的特定需求;二是缺乏有效的岗位分析功能,无法为学生提供个性化的求职指导;三是平台功能单一,无法实现学生与企业之间的有效互动。因此,开发一个专门针对高校学生的岗位招聘和分析平台,不仅能够解决现有解决方案的不足,还能为学生提供更加精准、高效的就业服务。

本课题旨在设计并实现一个基于Python的高校岗位招聘和分析平台,该平台将整合高校就业信息资源,提供岗位发布、简历投递、在线面试、岗位分析等功能,帮助学生更好地了解就业市场,提升求职竞争力。本课题的研究不仅具有重要的理论意义,能够丰富高校就业指导理论,还能为高校就业工作提供新的思路和方法。同时,该平台也具有显著的实际意义,能够为学生提供更加便捷、高效的就业服务,帮助企业更好地选拔人才,促进高校毕业生更加充分、更高质量地就业。

高校岗位招聘和分析平台-技术

开发语言:Java或Python
数据库:MySQL
系统架构:B/S
后端框架:SSM/SpringBoot(Spring+SpringMVC+Mybatis)+Django
前端:Vue+ElementUI+HTML+CSS+JavaScript+jQuery+Echarts

高校岗位招聘和分析平台-视频展示

基于Python高校岗位招聘和分析平台 计算机毕设选题推荐 计算机毕设选题讲解 毕设带做 适合作为毕业设计 课程设计 项目实战 附源码+安装部署+文档指导

高校岗位招聘和分析平台-图片展示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

高校岗位招聘和分析平台-代码展示

from flask import Flask, request, jsonify
from werkzeug.security import generate_password_hash, check_password_hash
from flask_sqlalchemy import SQLAlchemy

app = Flask(__name__)
app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///job_platform.db'
db = SQLAlchemy(app)

class User(db.Model):
    id = db.Column(db.Integer, primary_key=True)
    username = db.Column(db.String(80), unique=True, nullable=False)
    password_hash = db.Column(db.String(120), nullable=False)

    def set_password(self, password):
        self.password_hash = generate_password_hash(password)

    def check_password(self, password):
        return check_password_hash(self.password_hash, password)

@app.route('/register', methods=['POST'])
def register():
    data = request.json
    username = data['username']
    password = data['password']
    user = User(username=username)
    user.set_password(password)
    db.session.add(user)
    db.session.commit()
    return jsonify({'message': 'User registered successfully'}), 201

@app.route('/login', methods=['POST'])
def login():
    data = request.json
    username = data['username']
    password = data['password']
    user = User.query.filter_by(username=username).first()
    if user and user.check_password(password):
        return jsonify({'message': 'Login successful'}), 200
    else:
        return jsonify({'message': 'Invalid credentials'}), 401

if __name__ == '__main__':
    db.create_all()
    app.run(debug=True)
class Job(db.Model):
    id = db.Column(db.Integer, primary_key=True)
    title = db.Column(db.String(100), nullable=False)
    description = db.Column(db.Text, nullable=False)
    company = db.Column(db.String(100), nullable=False)
    location = db.Column(db.String(100), nullable=False)

@app.route('/jobs', methods=['POST'])
def create_job():
    data = request.json
    job = Job(title=data['title'], description=data['description'], company=data['company'], location=data['location'])
    db.session.add(job)
    db.session.commit()
    return jsonify({'message': 'Job created successfully'}), 201

@app.route('/jobs', methods=['GET'])
def get_jobs():
    jobs = Job.query.all()
    return jsonify([{'title': job.title, 'company': job.company, 'location': job.location} for job in jobs]), 200
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity

def recommend_jobs(user_skills, jobs):
    tfidf_vectorizer = TfidfVectorizer()
    tfidf_matrix = tfidf_vectorizer.fit_transform([job.description for job in jobs] + [user_skills])
    cosine_sim = cosine_similarity(tfidf_matrix[-1], tfidf_matrix)
    sim_scores = list(enumerate(cosine_sim[0]))
    sim_scores = sorted(sim_scores, key=lambda x: x[1], reverse=True)
    sim_scores = sim_scores[1:11]  # Get top 10 job recommendations
    job_indices = [i[0] for i in sim_scores]
    recommended_jobs = [jobs[i] for i in job_indices]
    return recommended_jobs

@app.route('/recommend', methods=['POST'])
def get_recommendations():
    data = request.json
    user_skills = data['skills']
    jobs = Job.query.all()
    recommended_jobs = recommend_jobs(user_skills, jobs)
    return jsonify([{'title': job.title, 'company': job.company, 'location': job.location} for job in recommended_jobs]), 200

高校岗位招聘和分析平台-结语

基于Python高校岗位招聘和分析平台 计算机毕设选题推荐 计算机毕设选题讲解 毕设带做 适合作为毕业设计 课程设计 项目实战 附源码+安装部署+文档指导

🌟🌟新河代码客
Java实战 | SpringBoot/SSM
Python实战项目 | Django
微信小程序/安卓实战项目
大数据实战项目
🌟🌟博主热衷于Java、Python、大数据、小程序、安卓、深度学习、爬虫、网站、Golang、大屏等实战项目。
🌟🌟提供专业开发、定制、代做、设计和文档指导服务,助您轻松解决技术难题!
🌟🌟有任何宝贵意见、技术问题或需求,欢迎在评论区交流。感谢大家的点赞、收藏和关注!
🌟🌟更多交流,欢迎访问博主的主页个人空间

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值