第九节课课堂总结

课堂总结:

DataLoader:可以批量处理。

 语法结构如右所示。

data.DataLoader(

   dataset,

   batch_size=1,

   shuffle=False,

   sampler=None,

   batch_sampler=None,

   num_workers=0,

   collate_fn=,

   pin_memory=False,

   drop_last=False,

   timeout=0,

   worker_init_fn=None,

)

DataLoader:可以批量处理。相关参数介绍如下所示。

dataset

加载的数据集。

batch_size

批大小。

shuffle

是否将数据打乱。

sampler

样本抽样。

num_workers

使用多进程加载的进程数,0代表不使用多进程。

collate_fn

如何将多个样本数据拼接成一个batch,一般使用默认的拼接方式即可。

pin_memory

是否将数据保存在锁页内存(pin memory区),其中的数据转到GPU会快一些。

drop_last

dataset 中的数据个数可能不是 batch_size的整数倍,drop_last为True会将多出来不足一个batch的数据丢弃。

DataLoader:可以批量处理。

 

 

提供了对PIL Image对象和Tensor对象的常用操作。 

2)对Tensor的常见操作如下

如果要对数据集进行多个操作,可通过Compose将这些操作像管道一样拼接起来,类似于nn.Sequential

transforms提供了对PIL Image对象和Tensor对象的常用操作。 

 

ImageFolder可以读取不同目录下的图像数据。

 

 

 

TensorBoard简介

TensorBoard的使用一般步骤如下。

1) 导入tensorboard,实例化SummaryWriter类,指明记录日志路径等信息

 

from torch.utils.tensorboard import SummaryWriter

#实例化SummaryWriter,并指明日志存放路径。在当前目录没有logs目录将自动创建。

writer = SummaryWriter(log_dir='logs')

#调用实例

writer.add_xxx()

#关闭writer

writer.close()

使用TensorBoard的一般步骤如下。

2)调用相应的API接口,接口一般格式为:

 

add_xxx(tag-name, object, iteration-number)

#即add_xxx(标签,记录的对象,迭代次数)

使用TensorBoard的一般步骤如下。

3)启动tensorboard服务。cd到logs目录所在的同级目录,在命令行输入如下命令,logdir等式右边可以是相对路径或绝对路径。

 

tensorboard --logdir=logs --port 6006   

#如果是windows环境,要注意路径解析,如

#tensorboard --logdir=r'D:\myboard\test\logs' --port 6006

4)Web展示。在浏览器输入:

 

http://服务器IP或名称:6006  #如果是本机,服务器名称可以使用localhost

用TensorBoard可视化损失值

 

运行结果:

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值