第十三节课课堂总结:
集成算法的简介:
对于一个复杂任务来说,将多个专家的判断进行适当的综合所得出的判断,要比其中任何一个专家单独的判断好
集成学习(ensemble learning)通过构建并结合多个学习器来完成学习任务等。
·结合策略
①简单平均法
②加权平均法
集成算法的分类
根据个体学习器的生成方式,目前的集成学习方法大致可以分为两类:
①Bagging:个体学习器间不存在强依赖关系、可同时生成的并行化方法,代表为随机森林。
②Boosting:个体学习器间存在强依赖关系、必须串行生成的序列化方法,如Adaboost。
③Stacking:聚合多个分类或回归模型(可以分阶段来做)