题目描述
集合是数学中的一个概念,用通俗的话来讲就是:一大堆数在一起就构成了集合。
集合有如下的特性:
-
无序性:任一个集合中,每个元素的地位都是相同的,元素之间是无序的。
-
互异性:一个集合中,任何两个元素都认为是不相同的,即每个元素只能出现一次。
-
确定性:给定一个集合,任给一个元素,该元素或者属于或者不属于该集合,二者必居其一,不允许有模棱两可的情况出现。
例如 A={1,2,3} 就是一个集合。我们可以知道,1 属于 A,即 1∈A;4 不属于 A,即 4∈/A。一个集合的大小,就是其中元素的个数。
现在定义一个特殊的 k-集合,要求满足:
- 集合的所有特性
- 对任意一个该集合内的元素 x,不存在一个数 y,使得 y=kx 并且 y 属于该集合。即集合中的任意一个数,它乘以 k 之后的数都不在这个集合内。
给你一个由 n 个不同的数组成的集合,请你从这个集合中找出一个最大的 k-集合。
输入格式
第一行:两个整数:n 和 k。
第二行:n 个整数:ai 表示给定的集合。
输出格式
第一行:一个整数:ans 表示最大的 k-集合的大小。
输入输出样例
输入 #1 输出 #1
6 2 3 2 3 6 5 4 10
说明/提示
提示:在样例所给集合中,找出的最大的 2-集合为 {4,5,6}
- 对于 30% 的数据:n,k≤100。
- 对于 40% 的数据:a[i]≤231−1。
- 对于 70% 的数据:n,k≤5000。
- 对于 100% 的数据:2≤n,k≤105,1≤ai≤2^63−1。
-
set用法简介
begin(),返回set容器的第一个元素
end(),返回set容器的最后一个元素
clear(),删除set容器中的所有的元素
empty(),判断set容器是否为空
max_size(),返回set容器可能包含的元素最大个数
size(),返回当前set容器中的元素个数
find(),返回给定值值得定位器,如果没找到则返回end()
insert(),去重
那么现在我们来分析题意:
查找的条件是:
1.这个数必须是k的倍数(因为所要找的是最大的 k-集合)
2.这个数的k倍在集合中找不到,那么换而言之就是这个数除以k,也就是这个数不是别的数的k倍
3.这个数不能重复(每个数只能出现一次)
强调:要排序,因为是按顺序查找数组元素。
核心:f(a[i]%k || ans.find(a[i]/k)==ans.end()){ans.insert(a[i]);}
-
按顺序满足123条件
AC代码:
-
//writer: Sakura
//name: 集合#include <cstdio>
#include <cstring>
#include <cmath>
#include <iostream>
#include <algorithm>
#include <set>
using namespace std;typedef long long ll;
int n,k;
set<ll> ans;
ll a[100005];int main(){
scanf("%d %d",&n,&k);
for(int i=1;i<=n;i++){
scanf("%lld",&a[i]);
}
sort(a+1,a+1+n);
for(int i=1;i<=n;i++){
if(a[i]%k || ans.find(a[i]/k)==ans.end()){ans.insert(a[i]);}
}
printf("%d\n",ans.size());
return 0;
}