洛谷 P1978 集合

题目描述

集合是数学中的一个概念,用通俗的话来讲就是:一大堆数在一起就构成了集合。

集合有如下的特性:

  • 无序性:任一个集合中,每个元素的地位都是相同的,元素之间是无序的。

  • 互异性:一个集合中,任何两个元素都认为是不相同的,即每个元素只能出现一次。

  • 确定性:给定一个集合,任给一个元素,该元素或者属于或者不属于该集合,二者必居其一,不允许有模棱两可的情况出现。

例如 A={1,2,3} 就是一个集合。我们可以知道,1 属于 A,即 1∈A;4 不属于 A,即 4∈/A。一个集合的大小,就是其中元素的个数。

现在定义一个特殊的 k-集合,要求满足:

  • 集合的所有特性
  • 对任意一个该集合内的元素 x,不存在一个数 y,使得 y=kx 并且 y 属于该集合。即集合中的任意一个数,它乘以 k 之后的数都不在这个集合内。

给你一个由 n 个不同的数组成的集合,请你从这个集合中找出一个最大的 k-集合。

输入格式

第一行:两个整数:n 和 k。

第二行:n 个整数:ai​ 表示给定的集合。

输出格式

第一行:一个整数:ans 表示最大的 k-集合的大小。

输入输出样例

输入 #1                                        输出 #1

6 2	                     3
2 3 6 5 4 10

说明/提示

提示:在样例所给集合中,找出的最大的 2-集合为 {4,5,6}

  • 对于 30% 的数据:n,k≤100。
  • 对于 40% 的数据:a[i]​≤231−1。
  • 对于 70% 的数据:n,k≤5000。
  • 对于 100% 的数据:2≤n,k≤105,1≤ai​≤2^63−1。
  • set用法简介

    begin(),返回set容器的第一个元素

    end(),返回set容器的最后一个元素

    clear(),删除set容器中的所有的元素

    empty(),判断set容器是否为空

    max_size(),返回set容器可能包含的元素最大个数

    size(),返回当前set容器中的元素个数

    find(),返回给定值值得定位器,如果没找到则返回end()

    insert(),去重


    那么现在我们来分析题意:

    查找的条件是:

    1.这个数必须是k的倍数(因为所要找的是最大的 k-集合)

    2.这个数的k倍在集合中找不到,那么换而言之就是这个数除以k,也就是这个数不是别的数的k倍

    3.这个数不能重复(每个数只能出现一次)

    强调:要排序,因为是按顺序查找数组元素。

    核心:f(a[i]%k || ans.find(a[i]/k)==ans.end()){ans.insert(a[i]);}

  • 按顺序满足123条件


    AC代码:

  • //writer: Sakura
    //name: 集合

    #include <cstdio>
    #include <cstring>
    #include <cmath>
    #include <iostream>
    #include <algorithm>
    #include <set>
    using namespace std;

    typedef long long ll;

    int n,k;
    set<ll> ans;
    ll a[100005];

    int main(){
        scanf("%d %d",&n,&k);
        for(int i=1;i<=n;i++){
            scanf("%lld",&a[i]);
        }
        sort(a+1,a+1+n);
        for(int i=1;i<=n;i++){
            if(a[i]%k || ans.find(a[i]/k)==ans.end()){ans.insert(a[i]);}
        }
        printf("%d\n",ans.size());
        return 0;
    }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值