一、整数在内存中存储
在讲解操作符时,我们了解到整数的2进制有三种表示形式:原码,反码,补码。这里复习一下。
对于有符号整数,分为数值位和符号位,最高位就是符号位,最高位的0表示正数,1表示负数。
对于无符号整数,全部为数值位,因此无符号整数只能是>=0的数。
对于正整数,原码,反码,补码都是一样的。
对于负整数,三种表示形式都不一样:
原码:直接将数值按正负数的形式翻译成2进制得到的就是原码。
反码:将原码数值位的数依次取反,符号位不变,得到的是反码。
补码:将反码+1就是补码。
对于整数,在内存中的存储都是以补码的形式存储,可以将符号位和数值域统⼀处理,同时,加法和减法也可以统⼀处理(CPU只有加法器)。
二、大小端字节序和字节序判断
我们在了解了整数在内存中存储形式后,来看一下这个现象:
我们发现,在内存中存放时,顺序是倒着的,这是为什么呢?
这就是我们接下来要说到的大小端字节。
1. 什么是大小端字节
当数据的大小超过1字节时,在内存中的存放就存在顺序问题,按照不同的存放顺序,我们将其分为大端字节存储和小端字节存储,来了解一下具体概念:
1️⃣大端字节
概念:数据低位的字节内容保存在内存中高地址处,数据高位的字节内容保存在内存低地址处。
2️⃣小端字节
概念:数据低位的字节内容保存在内存低地址处,数据高位的字节内容保存在内存高地址处。
2. 判断大小端字节
我们可以创建一个int类型变量a,并给他初始化为1,用一个char*指针p接受a的地址,&a得到的是a四个地址中较小的地址,对p解引用,如果值为1说明是小端,如果值为0说明是大端。
三、浮点数在内存中存储
我们先来看下面这个代码及其输出:
通过这个代码,我们能知道,浮点数在内存中的存储于整数不一样。那么浮点数在内存中怎么存储呢?
1. 浮点数的存放过程
根据国际标准IEEE(电⽓和电⼦⼯程协会) 754,任意⼀个⼆进制浮点数V可以表⽰成下⾯的形式:
表示符号位,S=1,V为负数,S=0,V为正数
表示有效数字,M是大于等于1,小于2的数
表示指数位
我们举几个例子看看:
①5.0 二进制为101.0,可以写成:1.010 * 2^2;所以S = 0, M = 1.01, E = 2
②-7.0 二进制为-111.0,可以写成:-1.110 * 2^2;所以S = 1, M = 1.11, E = 2
IEEE 754规定:
对于32位的浮点数,最⾼的1位存储符号位S,接着的8位存储指数E,剩下的23位存储有效数字M
对于64位的浮点数,最⾼的1位存储符号位S,接着的11位存储指数E,剩下的52位存储有效数字M
IEEE 754对于有效数字M和指数E还有其他规定:
①对于有效数字M:我们前面说过1<= M < 2;也就是说M可以写成1.xxxxxx,其中xxxxxx是小数部分。在计算机内部保存M时,默认这个数的第⼀位总是1,因此可以被舍去,只保存后⾯的 xxxxxx部分。⽐如保存1.01的时候,只保存01,等到读取的时候,再把第⼀位的1加上去。这样做的⽬ 的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第⼀位的1舍去以后,等于可以保 存24位有效数字。
②对于指数E:首先E为无符号整数,如果E为8位,它的取值范围为0~255;如果E为11位,它的取值范围为0~2047。但是我们知道,科学计数法可以出现负数,所以IEEE 754规定,存⼊内存时E的真实值必须再加上 ⼀个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。⽐如,2^10的E是 10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。
2. 浮点数的取出过程
指数E从内存中取出可以分为3中情况:
①E不全为0或不全为1
这时,浮点数就采⽤下⾯的规则表⽰,即指数E的计算值减去127(或1023),得到真实值,再将有效 数字M前加上第⼀位的1。
⽐如:0.5 的⼆进制形式为0.1,由于规定正数部分必须为1,即将⼩数点右移1位,则为1.0*2^(-1),其 阶码为-1+127(中间值)=126,表⽰为01111110,⽽尾数1.0去掉整数部分为0,补⻬0到23位 00000000000000000000000,则其⼆进制表⽰形式为:
②E全为0
这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,有效数字M不再加上第⼀位的1,⽽是还 原为0.xxxxxx的⼩数。这样做是为了表⽰±0,以及接近于0的很⼩的数字。
③E全为1
这时,如果有效数字M全为0,表⽰±⽆穷⼤(正负取决于符号位s)。