一元二次方程的公式解法&韦达定理

注:本文的方程都是一般式的形式,若不是,请先化为一般式。

前置知识:配方法

举个例子,求解如下方程:
x 2 + 4 x + 3 = 0 x^2+4x+3=0 x2+4x+3=0 x 2 + 4 x + 4 = 1 x^2+4x+4=1 x2+4x+4=1 ( x + 2 ) 2 = 1 (x+2)^2=1 (x+2)2=1 x + 2 = ± 1 x+2=\pm 1 x+2=±1 x 1 = − 3 , x 2 = − 1 x_1=-3,x_2=-1 x1=3,x2=1
而其中第一步将两边同时加一个 1 1 1,就可以将左边凑成一个完全平方式,再直接开平方求解。

基于配方法得出的公式解法

当我们用配方法解了很多方程之后,会发现:配方的过程很多时候是几乎一样的,所以,能否用字母表达呢?

求根公式推导

设方程为 a x 2 + b x + c = 0 ax^2+bx+c=0 ax2+bx+c=0,则:
a x 2 + b x + c = 0 ax^2+bx+c=0 ax2+bx+c=0 x 2 + b a x + c a = 0 x^2+\frac{b}{a}x+\frac{c}{a}=0 x2+abx+ac=0
而这一步的目的,就是为了将 x 2 x^2 x2 的系数化为 1 1 1,方便配方。
接下来,开始配方:
x 2 + b a x + ( b 2 a ) 2 = − c a + ( b 2 a ) 2 x^2+\frac{b}{a}x+(\frac{b}{2a})^2=-\frac{c}{a}+(\frac{b}{2a})^2 x2+abx+(2ab)2=ac+(2ab)2 ( x + b 2 a ) 2 = − c a + ( b 2 a ) 2 (x+\frac{b}{2a})^2=-\frac{c}{a}+(\frac{b}{2a})^2 (x+2ab)2=ac+(2ab)2 x + b 2 a = ± − c a + ( b 2 a ) 2 x+\frac{b}{2a}=\pm \sqrt{-\frac{c}{a}+(\frac{b}{2a})^2} x+2ab=±ac+(2ab)2 x + b 2 a = ± − 4 a c 4 a 2 + b 2 4 a 2 x+\frac{b}{2a}=\pm \sqrt{-\frac{4ac}{4a^2}+\frac{b^2}{4a^2}} x+2ab=±4a24ac+4a2b2 x + b 2 a = ± b 2 − 4 a c 4 a 2 x+\frac{b}{2a}=\pm \sqrt{\frac{b^2-4ac}{4a^2}} x+2ab=±4a2b24ac x = − b ± b 2 − 4 a c 2 a x=\frac{-b\pm \sqrt{b^2-4ac}}{2a} x=2ab±b24ac

一元二次方程的判别式

我们发现,最后化出的结果为 x = − b ± b 2 − 4 a c 2 a x=\frac{-b\pm \sqrt{b^2-4ac}}{2a} x=2ab±b24ac ,而这其中, b 2 − 4 a c b^2-4ac b24ac 就被称作一元二次方程的判别式,用 Δ \Delta Δ 表示。
为什么叫判别式呢?我们发现, Δ \Delta Δ 的外面是有一个根号的,那就说明:

Δ < 0 \Delta<0 Δ<0,则无法开根号,方程无解;
Δ = 0 \Delta=0 Δ=0,则不被求根公式右边分子的 ± \pm ± 符号影响,所以方程有两个相同的实数根;
Δ > 0 \Delta>0 Δ>0,则 Δ > 0 \sqrt{\Delta}>0 Δ >0,方程有两个不同的实数根。

求根公式的推广— 韦达定理

既然求根公式里面带一个 ± \pm ± 号,那两根之和一定是确定的。
x 1 + x 2 = − 2 b 2 a = − b a x_1+x_2=\frac{-2b}{2a}=-\frac{b}{a} x1+x2=2a2b=ab
再将两根的表达式相乘,发现两根之积也是确定的。
x 1 x 2 = − b + Δ 2 a ⋅ − b − Δ 2 a x_1x_2=\frac{-b+\sqrt{\Delta}}{2a}\cdot \frac{-b-\sqrt{\Delta}}{2a} x1x2=2ab+Δ 2abΔ x 1 x 2 = b 2 − Δ 4 a 2 x_1x_2=\frac{b^2-\Delta}{4a^2} x1x2=4a2b2Δ x 1 x 2 = b 2 − ( b 2 − 4 a c ) 4 a 2 x_1x_2=\frac{b^2-(b^2-4ac)}{4a^2} x1x2=4a2b2(b24ac) x 1 x 2 = 4 a c 4 a 2 x_1x_2=\frac{4ac}{4a^2} x1x2=4a24ac x 1 x 2 = c a x_1x_2=\frac{c}{a} x1x2=ac

总结

求根公式

x = − b ± b 2 − 4 a c 2 a x=\frac{-b\pm \sqrt{b^2-4ac}}{2a} x=2ab±b24ac

韦达定理

x 1 + x 2 = − b a x_1+x_2=-\frac{b}{a} x1+x2=ab x 1 x 2 = c a x_1x_2=\frac{c}{a} x1x2=ac

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值