注:本文的方程都是一般式的形式,若不是,请先化为一般式。
前置知识:配方法
举个例子,求解如下方程:
x
2
+
4
x
+
3
=
0
x^2+4x+3=0
x2+4x+3=0
x
2
+
4
x
+
4
=
1
x^2+4x+4=1
x2+4x+4=1
(
x
+
2
)
2
=
1
(x+2)^2=1
(x+2)2=1
x
+
2
=
±
1
x+2=\pm 1
x+2=±1
x
1
=
−
3
,
x
2
=
−
1
x_1=-3,x_2=-1
x1=−3,x2=−1
而其中第一步将两边同时加一个
1
1
1,就可以将左边凑成一个完全平方式,再直接开平方求解。
基于配方法得出的公式解法
当我们用配方法解了很多方程之后,会发现:配方的过程很多时候是几乎一样的,所以,能否用字母表达呢?
求根公式推导
设方程为
a
x
2
+
b
x
+
c
=
0
ax^2+bx+c=0
ax2+bx+c=0,则:
a
x
2
+
b
x
+
c
=
0
ax^2+bx+c=0
ax2+bx+c=0
x
2
+
b
a
x
+
c
a
=
0
x^2+\frac{b}{a}x+\frac{c}{a}=0
x2+abx+ac=0
而这一步的目的,就是为了将
x
2
x^2
x2 的系数化为
1
1
1,方便配方。
接下来,开始配方:
x
2
+
b
a
x
+
(
b
2
a
)
2
=
−
c
a
+
(
b
2
a
)
2
x^2+\frac{b}{a}x+(\frac{b}{2a})^2=-\frac{c}{a}+(\frac{b}{2a})^2
x2+abx+(2ab)2=−ac+(2ab)2
(
x
+
b
2
a
)
2
=
−
c
a
+
(
b
2
a
)
2
(x+\frac{b}{2a})^2=-\frac{c}{a}+(\frac{b}{2a})^2
(x+2ab)2=−ac+(2ab)2
x
+
b
2
a
=
±
−
c
a
+
(
b
2
a
)
2
x+\frac{b}{2a}=\pm \sqrt{-\frac{c}{a}+(\frac{b}{2a})^2}
x+2ab=±−ac+(2ab)2
x
+
b
2
a
=
±
−
4
a
c
4
a
2
+
b
2
4
a
2
x+\frac{b}{2a}=\pm \sqrt{-\frac{4ac}{4a^2}+\frac{b^2}{4a^2}}
x+2ab=±−4a24ac+4a2b2
x
+
b
2
a
=
±
b
2
−
4
a
c
4
a
2
x+\frac{b}{2a}=\pm \sqrt{\frac{b^2-4ac}{4a^2}}
x+2ab=±4a2b2−4ac
x
=
−
b
±
b
2
−
4
a
c
2
a
x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}
x=2a−b±b2−4ac
一元二次方程的判别式
我们发现,最后化出的结果为
x
=
−
b
±
b
2
−
4
a
c
2
a
x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}
x=2a−b±b2−4ac,而这其中,
b
2
−
4
a
c
b^2-4ac
b2−4ac 就被称作一元二次方程的判别式,用
Δ
\Delta
Δ 表示。
为什么叫判别式呢?我们发现,
Δ
\Delta
Δ 的外面是有一个根号的,那就说明:
若
Δ
<
0
\Delta<0
Δ<0,则无法开根号,方程无解;
若
Δ
=
0
\Delta=0
Δ=0,则不被求根公式右边分子的
±
\pm
± 符号影响,所以方程有两个相同的实数根;
若
Δ
>
0
\Delta>0
Δ>0,则
Δ
>
0
\sqrt{\Delta}>0
Δ>0,方程有两个不同的实数根。
求根公式的推广— 韦达定理
既然求根公式里面带一个
±
\pm
± 号,那两根之和一定是确定的。
x
1
+
x
2
=
−
2
b
2
a
=
−
b
a
x_1+x_2=\frac{-2b}{2a}=-\frac{b}{a}
x1+x2=2a−2b=−ab
再将两根的表达式相乘,发现两根之积也是确定的。
x
1
x
2
=
−
b
+
Δ
2
a
⋅
−
b
−
Δ
2
a
x_1x_2=\frac{-b+\sqrt{\Delta}}{2a}\cdot \frac{-b-\sqrt{\Delta}}{2a}
x1x2=2a−b+Δ⋅2a−b−Δ
x
1
x
2
=
b
2
−
Δ
4
a
2
x_1x_2=\frac{b^2-\Delta}{4a^2}
x1x2=4a2b2−Δ
x
1
x
2
=
b
2
−
(
b
2
−
4
a
c
)
4
a
2
x_1x_2=\frac{b^2-(b^2-4ac)}{4a^2}
x1x2=4a2b2−(b2−4ac)
x
1
x
2
=
4
a
c
4
a
2
x_1x_2=\frac{4ac}{4a^2}
x1x2=4a24ac
x
1
x
2
=
c
a
x_1x_2=\frac{c}{a}
x1x2=ac
总结
求根公式
x = − b ± b 2 − 4 a c 2 a x=\frac{-b\pm \sqrt{b^2-4ac}}{2a} x=2a−b±b2−4ac
韦达定理
x 1 + x 2 = − b a x_1+x_2=-\frac{b}{a} x1+x2=−ab x 1 x 2 = c a x_1x_2=\frac{c}{a} x1x2=ac