最一般的bfs会定义一个st数组用来“不回头”,但在这题中并不适用,因为对于一个坐标,我们可以朝着一个远离终点的位置前进获取能量再回来,如果此时的能量大于原本的能量,那么这个方案是显然可行的,因此我们可以考虑用一个dis数组来记录下坐标为(x, y)时所能拥有的最大能量,如果在bfs的过程中在(x, y)处我们的能量大于dis[x][y],那么便可以更新dis[x][y],并将这个位置和它的能量加入到队列中,因为在遍历图的时候总能以任何方式走到任何可以走到的点,因此可以确保将dis[x][y]更新为最大值。当dis[x][y]无法再被更新时,遍历也就到了头。
初始化dis为-1,最后判断终点的dis值是否大于0即可。
#include <bits/stdc++.h>
using namespace std;
const int N = 5e7 + 10;
#define ll long long
#define INF 0x3f3f3f3f
#define PII pair<int, int>
char a[250][250];
int h, w, n, front = 0, rear = 1, dx[] = {0, 0, 1, -1}, dy[] = {1, -1, 0, 0};
int b[250][250], dis[250][250]; // dis[i][j]表示坐标为(i, j)的点所能拥有的最大能量
struct node {
int x, y;
int e;
}q[N], t;
PII fin;
void bfs() { // 不加st数组的限制,因此可以向更远的地方获取能量再回到原来的位置,我们可以用dis数组来记录最大能量
while (front <= rear) {
node k = q[front++];
if (k.e == 0) continue;
for (int i = 0; i < 4; i++) {
int xx = k.x + dx[i], yy = k.y + dy[i];
int ee = k.e;
if (xx < 0 || yy < 0 || xx >= h || yy >= w || a[xx][yy] == '#') continue;
ee = max(ee - 1, b[xx][yy]);
if (ee > dis[xx][yy]) { // 如果从(x, y)到(xx, yy)时能使(xx, yy)处的能量更多的话
dis[xx][yy] = ee;
q[++rear] = {xx, yy, ee};
}
}
}
}
void solve() {
memset(dis, -1, sizeof dis);
cin >> h >> w;
for (int i = 0; i < h; i++) cin >> a[i];
cin >> n;
for (int i = 0; i < n; i++) {
int x, y, E;
cin >> x >> y >> E;
b[x - 1][y - 1] += E;
}
for (int i = 0; i < h; i++) {
for (int j = 0; j < w; j++) {
if (a[i][j] == 'S') q[++front] = {i, j, b[i][j]};
if (a[i][j] == 'T') fin = {i, j};
}
}
bfs();
cout << (dis[fin.first][fin.second] >= 0 ? "Yes\n" : "No\n");
}
signed main() {
ios::sync_with_stdio(false);
cin.tie(0), cout.tie(0);
int T = 1;
// cin >> T;
while (T--)
solve();
return 0;
}