NIST SRE数据集,全称为NIST Speaker Recognition Evaluation数据集,是由美国国家标准与技术研究院(NIST)定期组织的一系列声纹识别技术评测活动中所使用的数据集。这些评测活动旨在评估声纹识别技术的最新进展,并推动该领域的研究和应用。以下是NIST SRE数据集的详细介绍:
一、背景与目的
- 主办方:美国国家标准与技术研究院(NIST)
- 目的:评估声纹识别技术的性能,包括说话人确认和说话人辨认两种任务,为声纹识别技术的发展提供重要的参考和动力。
二、历史与发展
自1996年首次举办以来,NIST SRE已经持续多年,评测范围和内容不断扩大和更新,以适应声纹识别领域的最新趋势和挑战。以下是几个重要年份的评测特点:
- NIST SRE 1996:首次举办的NIST SRE,为后续的评测奠定了基础,主要评估了电话语音中的声纹识别技术,并引入了新的数据集和评测指标。
- NIST SRE 2000:引入了基于高斯混合模型(GMM)的声纹识别技术,评测了不同语言的声纹识别性能。
- NIST SRE 2008:评估了基于i-vector的声纹识别技术,增加了对长语音样本的评估。
- NIST SRE 2010:引入了基于深度学习的声纹识别技术,评测了跨信道和跨语言的声纹识别性能。
- NIST SRE 2018及之后:评测了更先进的声纹识别技术,包括基于神经网络的方法,增加了对音频和视频融合(Audio-Visual)的声纹识别评估。
三、数据集特点
- 多样性:NIST SRE数据集包含了多种语音类型和复杂的背景噪音,以模拟真实世界中的声纹识别场景。
- 规模性:随着评测活动的进行,数据集的规模不断扩大,包含了更多的语音样本和转录文本。
- 挑战性:为了推动声纹识别技术的发展,NIST SRE数据集在设计上增加了多种挑战性因素,如信道变化、噪音干扰、语速变化等。
NLP语料共享、LDC语料https://mp.weixin.qq.com/s/8GgZFh9XAr7FYwivQ_ajRg