题目描述
叮铃铃 …… 上课铃响了。
「啊,又是无聊的 math」,坐在教室里的 ZQC 这样想道。Mr.Sam 今天在课上讲了平面直角坐标系上的向量。「这不是幼儿园姿势么」,ZQC 实在忍不住,睡着了。Mr.Sam 把 ZQC 给叫醒,并给了他这样一道题:
假设有一平面直角坐标系,ZQC 有一支画笔,起点是 (1,1) (1, 1)(1,1),现在有 nnn 个向量,第 iii 个向量形如 (xi,yi) (x_i, y_i)(xi,yi),且满足每一个向量都满足 xi,yi x_i, y_ixi,yi 均为偶数。ZQC 按顺序根据这些向量改变自己的画笔的位置,即位置依次改变成 (1+x1,1+y1),(1+x1+x2,1+y1+y2)… (1 + x_1, 1 + y_1), (1 + x_1 + x_2, 1 + y_1 + y_2) \ldots(1+x1,1+y1),(1+x1+x2,1+y1+y2)…。每次改变位置时,画笔都沿两点之间的最短距离移动。结束时,画笔的运动轨迹一定由 nnn 条线段组成。Mr.Sam 要 ZQC 回答这些线段穿过 xxx 轴和 yyy 轴的总次数之和是多少。
但这样的问题对 ZQC 来说太简单了,于是 Mr.Sam 设定了一个指针,一开始指在第一个向量。现在他做了 q(q≤3×105) q(q \leq 3 \times 10 ^ 5)q(q≤3×105) 个操作,操作有四种,分别是:
- B 表示把指针向后移动,如果越界则视为无效。即,如果设指针移动前的位置是 iii,那么移动后的位置是 max(1,i−1)\max(1,i-1)max(1,i−1)。
- F 表示把指针向前移动,如果越界则视为无效。即,如果设指针移动前的位置是 iii,那么移动后的位置是 min(n,i+1)\min(n,i+1)min(n,i+1)。
- C nx ny 把当前指针所指的向量修改为 (nx,ny)(\text{nx},\text{ny})(nx,ny),这里同样满足 nx,ny\text{nx},\text{ny}nx,ny 为偶数。
- Q 假设 ZQC 从起点开始,按第 1 11 个到第 n(n≤105) n(n \leq 10 ^ 5)n(n≤105) 个的顺序沿向量走,询问画出的 nnn 条线段穿过 xxx 轴和 yyy 轴次数的总和。
ZQC 想了想,这不是思博题么。
我是要拿图灵奖和菲尔兹奖的男人,这种题浪费我时间,不做!
但是如果不做的话,ZQC 又会遭到 detention,所以他希望聪明的你能在 +1s 内帮他解决这道题。
输入
第一行一个正整数 n nn。
接下来 n nn 行每行两个整数 x,y x, yx,y,保证 x,y x, yx,y 均为偶数。
接下来一行一个整数 q qq。
接下来 q qq 行,格式见「题目描述」。
输出
对于询问中的每个 q qq,输出画出的 n nn 条线段穿过 x xx 轴和 y yy 轴次数的总和。
样例输入
6
2 2
2 -6
-2 -4
-6 4
10 -10
-8 12
16
Q
C -4 -4
F
F
Q
F
C 6 -2
B
B
B
Q
C 0 6
Q
F
C -8 4
Q
样例输出
4
4
3
1
5
提示
题目中出现的坐标值的绝对值均不超过 500 500500。
因为起点是 (1,1)(1,1)(1,1) 而每个向量的每个分量均为偶数,故每次画笔停留的位置横纵坐标均为奇数,不可能在坐标轴上。
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
typedef pair<int,int> pa;
inline void read(int &x){
x=0;static char ch;static bool flag;flag = false;
while(ch=getchar(),ch<'!');if(ch == '-') ch=getchar(),flag = true;
while(x=10*x+ch-'0',ch=getchar(),ch>'!');if(flag) x=-x;
}
#define rg register int
#define rep(i,a,b) for(rg i=(a);i<=(b);++i)
#define per(i,a,b) for(rg i=(a);i>=(b);--i)
#define mk(x,y) make_pair(x,y)
#define fst first
#define snd second
const int maxn = 100010;
struct Treap{
struct Node{
Node *ch[2];
int w,siz,fix;
void update(){
siz = ch[0]->siz + ch[1]->siz + 1;
}
}*root,mem[maxn],*it,*null;
Node *ws[maxn];int top;
inline void init(){
it = mem;null = it ++ ;
null->ch[0] = null->ch[1] = null;
null->siz = 0;null->fix = 0x3f3f3f3f;
root = null;
}
inline Node* newNode(int x){
Node *p = top ? ws[top--] : it ++ ;
p->ch[0] = p->ch[1] = null;
p->siz = 1;p->fix = rand();
p->w = x;return p;
}
inline void rotate(Node* &p,int k){
Node *x = p->ch[k^1];
p->ch[k^1] = x->ch[k];
x->ch[k] = p;
p->update();x->update();
p = x;return ;
}
void insert(Node* &p,int x){
if(p == null){
p = newNode(x);
return ;
}insert(p->ch[x >= p->w],x);
if(p->ch[x>=p->w]->fix < p->fix)
rotate(p,x<p->w);
p->update();
}
void erase(Node* &p,int x){
if(p->w == x){
if(p->ch[0] != null && p->ch[1] != null){
int k = p->ch[0]->fix < p->ch[1]->fix;
rotate(p,k);
erase(p->ch[k],x);
}else{
Node *y = p->ch[0] != null ? p->ch[0] : p->ch[1];
ws[++top] = p;p = y;
}
}else erase(p->ch[x >= p->w],x);
if(p != null) p->update();
}
inline void insert(int x){insert(root,x);}
inline void erase(int x){erase(root,x);}
inline int les(int x){
Node *p = root;
int res = 0;
while(p != null){
if(p->w > x) p = p->ch[0];
else res += p->ch[0]->siz + 1,p = p->ch[1];
}return res;
}
inline int gre(int x){
Node *p = root;
int res = 0;
while(p != null){
if(p->w < x) p = p->ch[1];
else res += p->ch[1]->siz + 1,p = p->ch[0];
}return res;
}
Treap(){init();}
}zsx[2],zsy[2];
pa a[maxn];
int X,Y,dx,dy,pot,n,ansx,ansy;
inline void move_right(){
if(pot == n) return ;++ pot;
zsx[0].erase(min(X-dx,X+a[pot].fst-dx));
zsy[0].erase(min(Y-dy,Y+a[pot].snd-dy));
zsx[1].erase(max(X-dx,X+a[pot].fst-dx));
zsy[1].erase(max(Y-dy,Y+a[pot].snd-dy));
if(X*(X+a[pot].fst) < 0) ++ ansx;
if(Y*(Y+a[pot].snd) < 0) ++ ansy;
X += a[pot].fst;Y += a[pot].snd;
}
inline void move_left(){
if(pot == 1) return ;
X -= a[pot].fst;Y -= a[pot].snd;
if(X*(X+a[pot].fst) < 0) -- ansx;
if(Y*(Y+a[pot].snd) < 0) -- ansy;
zsx[0].insert(min(X-dx,X+a[pot].fst-dx));
zsy[0].insert(min(Y-dy,Y+a[pot].snd-dy));
zsx[1].insert(max(X-dx,X+a[pot].fst-dx));
zsy[1].insert(max(Y-dy,Y+a[pot].snd-dy));
-- pot;
}
inline void modify(){
int x,y;read(x);read(y);
if(X*(X-a[pot].fst) < 0) -- ansx;
if(Y*(Y-a[pot].snd) < 0) -- ansy;
X += x - a[pot].fst;
Y += y - a[pot].snd;
dx += x - a[pot].fst;
dy += y - a[pot].snd;
a[pot] = mk(x,y);
if(X*(X-x) < 0) ++ ansx;
if(Y*(Y-y) < 0) ++ ansy;
}
inline int query(){
int res = n - pot - zsx[0].gre(-dx) - zsx[1].les(-dx) +
n - pot - zsy[0].gre(-dy) - zsy[1].les(-dy);
return res + ansx + ansy;
}
int main(){
srand(2619520);
int q;read(n);
X = Y = 1;
rep(i,1,n){
read(a[i].fst);read(a[i].snd);
zsx[0].insert(min(X,X+a[i].fst));
zsy[0].insert(min(Y,Y+a[i].snd));
zsx[1].insert(max(X,X+a[i].fst));
zsy[1].insert(max(Y,Y+a[i].snd));
X += a[i].fst;Y += a[i].snd;
}X = Y = 1;
move_right();read(q);
char ch;
while(q--){
while(ch=getchar(),ch<'!');
if(ch == 'B') move_left();
else if(ch == 'F') move_right();
else if(ch == 'C') modify();
else printf("%d\n",query());
}
return 0;
}