1. 概念
如图,为函数/方程作画的例子,即使用函数或方程构建为我们想要的图像.(网站为Geogebra图形计算器)
2. 常见函数
函数定义给定一个数集 A \mathbb{A} A,假设其中的元素为 x x x , 对 A \mathbb{A} A 中的元素 x x x 施加对应法则 f f f , 记作 f ( x ) f(x) f(x) , 得到另一数集 B \mathbb{B} B , 假设 B \mathbb{B} B 中的元素为 y y y , 则 y y y 与 x x x 之间的等量关系可以用 y = f ( x ) y=f(x) y=f(x) 表示.
(1)幂函数
y = x a ( a ≠ 0 ) y = x ^ a(a \ne 0) y=xa(a=0)
-
a ∈ Z a \in \mathbb{Z} a∈Z 时
(1) a m o d 2 = 0 , f ( x ) = f ( − x ) a \bmod 2 = 0, f(x)=f(-x) amod2=0,f(x)=f(−x), 图像始终通过点 ( 1 , 1 ) (1,1) (1,1) 和 ( − 1 , 1 ) (-1, 1) (−1,1).
如图为 y = x 2 y=x^2 y=x2(绿) 和 y = x − 2 y=x^{-2} y=x−2(灰).
(2) a m o d 2 = 1 , f ( − x ) = − f ( x ) a \bmod 2 = 1, f(-x)=-f(x) amod2=1,f(−x)=−f(x) , 图像始终通过点 ( 1 , 1 ) (1, 1) (1,1) 和 ( − 1 , − 1 ) (-1, -1) (−1,−1).
如图为 y = x 3 y=x^3 y=x3 (绿) 和 y = x − 3 y=x^{-3} y=x−3 (灰). -
a ∈ Q a \in \mathbb{Q} a∈Q 时, 原函数可看做 y = x a ⋅ x 1 b ( b ≠ 0 , a , b ∈ Z y=x^a \cdot x^{\frac{1}{b}}(b \ne 0, a, b \in \mathbb{Z} y=xa⋅xb1(b=0,a,b∈Z.
对于参数 a a a , 同上.
当 b m o d 2 = 0 b \bmod 2=0 bmod2=0 时, 原函数定义域为 [ 0 , + ∞ ) [0, +\infty) [0,+∞).
当 b m o d 2 = 1 b \bmod 2=1 bmod2=1时, 原函数定义域为 R \mathbb{R} R.
如图为 y = x 1 2 y=x^\frac{1}{2} y=x21 和 y = x 1 3 y=x^\frac{1}{3} y=x31 -
a ∈ R , a ∉ Q a \in \mathbb{R}, a \notin \mathbb{Q} a∈R,a∈/Q 时, 这种情况较少见, 定义域通常为 [ 0 , + ∞ ) [0, +\infty) [0,+∞).
所有幂函数图像均通过点 ( 1 , 1 ) (1,1) (1,1).
(2) 指数函数
y = a x ( a > 0 ) y=a^x(a > 0) y=ax(a>0)
- a > 1 a>1 a>1 时, 图像向 x x x 轴正方向递增, 且速度愈加快.
- a = 1 a=1 a=1 时, 图像为一条直线.
- a < 1 a<1 a<1 时, 图像向 x x x 轴负方向递增, 且速度愈加快.
所有指数函数均通过点 ( 0 , 1 ) (0, 1) (0,1).
(3) 对数函数
y = log a x ( a ≠ 1 , a > 0 ) y=\log_ax(a \ne 1, a>0) y=logax(a=1,a>0)
- a > 1 a>1 a>1 时, 图像向 x x x 轴正方向递增, 且速度愈加慢.
- a < 1 a<1 a<1 时, 图像向 x x x 轴正方向递减, 且速度愈加慢.
所有指数函数均通过点 ( 1 , 0 ) (1, 0) (1,0).
(4) 三角函数
y
=
sin
x
正弦
y
=
cos
x
余弦
y
=
tan
x
=
sin
x
cos
x
正切
y
=
cot
x
=
1
tan
x
余切
y
=
sec
x
=
1
cos
x
正割
y
=
csc
x
=
1
sin
x
余割
y
=
arcsin
x
反正弦
y
=
arccos
x
反余弦
y
=
arctan
x
反正切
y
=
sinh
x
=
e
x
−
e
−
x
2
双曲正弦
y
=
cosh
x
=
e
x
+
e
−
x
2
双曲余弦
y
=
tanh
x
=
sinh
x
cosh
x
双曲正切
y
=
coth
x
=
1
tanh
x
双曲余切
y
=
sech
x
=
1
cosh
x
双曲正割
y
=
csch
x
=
1
sinh
x
双曲余割
y
=
arsinh
x
反双曲正弦
y
=
arcosh
x
反双曲余弦
y
=
artanh
x
反双曲正切
\begin{align*} y&=\sin x&正弦\\ y&=\cos x&余弦\\ y&=\tan x=\frac{\sin x}{\cos x}&正切\\ y&=\cot x=\frac{1}{\tan x}&余切\\ y&=\sec x=\frac{1}{\cos x}&正割\\ y&=\csc x=\frac{1}{\sin x}&余割\\ y&=\arcsin x&反正弦\\ y&=\arccos x&反余弦\\ y&=\arctan x&反正切\\ y&=\sinh x=\frac{e^x-e^{-x}}{2}&双曲正弦\\ y&=\cosh x=\frac{e^x+e^{-x}}{2}&双曲余弦\\ y&=\tanh x=\frac{\sinh x}{\cosh x}&双曲正切\\ y&=\operatorname{coth} x=\frac{1}{\tanh x}&双曲余切\\ y&=\operatorname{sech} x=\frac{1}{\cosh x}&双曲正割\\ y&=\operatorname{csch} x=\frac{1}{\sinh x}&双曲余割\\ y&=\operatorname{arsinh} x&反双曲正弦\\ y&=\operatorname{arcosh} x&反双曲余弦\\ y&=\operatorname{artanh} x&反双曲正切\\ \end{align*}
yyyyyyyyyyyyyyyyyy=sinx=cosx=tanx=cosxsinx=cotx=tanx1=secx=cosx1=cscx=sinx1=arcsinx=arccosx=arctanx=sinhx=2ex−e−x=coshx=2ex+e−x=tanhx=coshxsinhx=cothx=tanhx1=sechx=coshx1=cschx=sinhx1=arsinhx=arcoshx=artanhx正弦余弦正切余切正割余割反正弦反余弦反正切双曲正弦双曲余弦双曲正切双曲余切双曲正割双曲余割反双曲正弦反双曲余弦反双曲正切
三角函数全家福:
没什么总结的, 看着玩吧.
(5) 特殊函数
y = ∣ x ∣ ( abs x ) 绝对值 y = ⌊ x ⌋ ( floor x ) 向下取整 y = ⌈ x ⌉ ( ceil x ) 向上取整 y = sgn x 符号 y = round x 取整 ( 四舍五入 ) y = Γ ( x ) 阶乘 y = ψ ( x ) 普西 y = erf x 误差 y = ζ ( x ) 黎曼泽塔函数 \begin{align*} y&=|x|\quad(\operatorname{abs}x)&绝对值\\ y&=\lfloor x \rfloor\quad(\operatorname{floor}x)&向下取整\\ y&=\lceil x \rceil\quad(\operatorname{ceil}x)&向上取整\\ y&=\operatorname{sgn} x&符号\\ y&=\operatorname{round}x&取整(四舍五入)\\ y&=\Gamma (x)&阶乘\\ y&=\psi(x)&普西\\ y&=\operatorname{erf}x&误差\\ y&=\zeta(x)&黎曼泽塔函数\\ \end{align*} yyyyyyyyy=∣x∣(absx)=⌊x⌋(floorx)=⌈x⌉(ceilx)=sgnx=roundx=Γ(x)=ψ(x)=erfx=ζ(x)绝对值向下取整向上取整符号取整(四舍五入)阶乘普西误差黎曼泽塔函数
图像过于抽象, 这里不给出, 想看的到Geogebra网站看.