函数/方程作画[1]——基本函数

1. 概念


如图,为函数/方程作画的例子,即使用函数或方程构建为我们想要的图像.(网站为Geogebra图形计算器

2. 常见函数

函数定义给定一个数集 A \mathbb{A} A,假设其中的元素为 x x x , 对 A \mathbb{A} A 中的元素 x x x 施加对应法则 f f f , 记作 f ( x ) f(x) f(x) , 得到另一数集 B \mathbb{B} B , 假设 B \mathbb{B} B 中的元素为 y y y , 则 y y y x x x 之间的等量关系可以用 y = f ( x ) y=f(x) y=f(x) 表示.

(1)幂函数

y = x a ( a ≠ 0 ) y = x ^ a(a \ne 0) y=xa(a=0)

  • a ∈ Z a \in \mathbb{Z} aZ
    (1) a   m o d   2 = 0 , f ( x ) = f ( − x ) a \bmod 2 = 0, f(x)=f(-x) amod2=0,f(x)=f(x), 图像始终通过点 ( 1 , 1 ) (1,1) (1,1) ( − 1 , 1 ) (-1, 1) (1,1).

    如图为 y = x 2 y=x^2 y=x2(绿) 和 y = x − 2 y=x^{-2} y=x2(灰).
    (2) a   m o d   2 = 1 , f ( − x ) = − f ( x ) a \bmod 2 = 1, f(-x)=-f(x) amod2=1,f(x)=f(x) , 图像始终通过点 ( 1 , 1 ) (1, 1) (1,1) ( − 1 , − 1 ) (-1, -1) (1,1).

    如图为 y = x 3 y=x^3 y=x3 (绿) 和 y = x − 3 y=x^{-3} y=x3 (灰).

  • a ∈ Q a \in \mathbb{Q} aQ, 原函数可看做 y = x a ⋅ x 1 b ( b ≠ 0 , a , b ∈ Z y=x^a \cdot x^{\frac{1}{b}}(b \ne 0, a, b \in \mathbb{Z} y=xaxb1(b=0,a,bZ.
    对于参数 a a a , 同上.
    b   m o d   2 = 0 b \bmod 2=0 bmod2=0 时, 原函数定义域为 [ 0 , + ∞ ) [0, +\infty) [0,+).
    b   m o d   2 = 1 b \bmod 2=1 bmod2=1时, 原函数定义域为 R \mathbb{R} R.

    如图为 y = x 1 2 y=x^\frac{1}{2} y=x21 y = x 1 3 y=x^\frac{1}{3} y=x31

  • a ∈ R , a ∉ Q a \in \mathbb{R}, a \notin \mathbb{Q} aR,a/Q, 这种情况较少见, 定义域通常为 [ 0 , + ∞ ) [0, +\infty) [0,+).

所有幂函数图像均通过点 ( 1 , 1 ) (1,1) (1,1).

(2) 指数函数

y = a x ( a > 0 ) y=a^x(a > 0) y=ax(a>0)

  • a > 1 a>1 a>1 时, 图像向 x x x 轴正方向递增, 且速度愈加快.
  • a = 1 a=1 a=1 时, 图像为一条直线.
  • a < 1 a<1 a<1 时, 图像向 x x x 轴负方向递增, 且速度愈加快.

所有指数函数均通过点 ( 0 , 1 ) (0, 1) (0,1).

(3) 对数函数

y = log ⁡ a x ( a ≠ 1 , a > 0 ) y=\log_ax(a \ne 1, a>0) y=logax(a=1,a>0)

  • a > 1 a>1 a>1 时, 图像向 x x x 轴正方向递增, 且速度愈加慢.
  • a < 1 a<1 a<1 时, 图像向 x x x 轴正方向递减, 且速度愈加慢.

所有指数函数均通过点 ( 1 , 0 ) (1, 0) (1,0).

(4) 三角函数

y = sin ⁡ x 正弦 y = cos ⁡ x 余弦 y = tan ⁡ x = sin ⁡ x cos ⁡ x 正切 y = cot ⁡ x = 1 tan ⁡ x 余切 y = sec ⁡ x = 1 cos ⁡ x 正割 y = csc ⁡ x = 1 sin ⁡ x 余割 y = arcsin ⁡ x 反正弦 y = arccos ⁡ x 反余弦 y = arctan ⁡ x 反正切 y = sinh ⁡ x = e x − e − x 2 双曲正弦 y = cosh ⁡ x = e x + e − x 2 双曲余弦 y = tanh ⁡ x = sinh ⁡ x cosh ⁡ x 双曲正切 y = coth ⁡ x = 1 tanh ⁡ x 双曲余切 y = sech ⁡ x = 1 cosh ⁡ x 双曲正割 y = csch ⁡ x = 1 sinh ⁡ x 双曲余割 y = arsinh ⁡ x 反双曲正弦 y = arcosh ⁡ x 反双曲余弦 y = artanh ⁡ x 反双曲正切 \begin{align*} y&=\sin x&正弦\\ y&=\cos x&余弦\\ y&=\tan x=\frac{\sin x}{\cos x}&正切\\ y&=\cot x=\frac{1}{\tan x}&余切\\ y&=\sec x=\frac{1}{\cos x}&正割\\ y&=\csc x=\frac{1}{\sin x}&余割\\ y&=\arcsin x&反正弦\\ y&=\arccos x&反余弦\\ y&=\arctan x&反正切\\ y&=\sinh x=\frac{e^x-e^{-x}}{2}&双曲正弦\\ y&=\cosh x=\frac{e^x+e^{-x}}{2}&双曲余弦\\ y&=\tanh x=\frac{\sinh x}{\cosh x}&双曲正切\\ y&=\operatorname{coth} x=\frac{1}{\tanh x}&双曲余切\\ y&=\operatorname{sech} x=\frac{1}{\cosh x}&双曲正割\\ y&=\operatorname{csch} x=\frac{1}{\sinh x}&双曲余割\\ y&=\operatorname{arsinh} x&反双曲正弦\\ y&=\operatorname{arcosh} x&反双曲余弦\\ y&=\operatorname{artanh} x&反双曲正切\\ \end{align*} yyyyyyyyyyyyyyyyyy=sinx=cosx=tanx=cosxsinx=cotx=tanx1=secx=cosx1=cscx=sinx1=arcsinx=arccosx=arctanx=sinhx=2exex=coshx=2ex+ex=tanhx=coshxsinhx=cothx=tanhx1=sechx=coshx1=cschx=sinhx1=arsinhx=arcoshx=artanhx正弦余弦正切余切正割余割反正弦反余弦反正切双曲正弦双曲余弦双曲正切双曲余切双曲正割双曲余割反双曲正弦反双曲余弦反双曲正切
三角函数全家福:

没什么总结的, 看着玩吧.

(5) 特殊函数

y = ∣ x ∣ ( abs ⁡ x ) 绝对值 y = ⌊ x ⌋ ( floor ⁡ x ) 向下取整 y = ⌈ x ⌉ ( ceil ⁡ x ) 向上取整 y = sgn ⁡ x 符号 y = round ⁡ x 取整 ( 四舍五入 ) y = Γ ( x ) 阶乘 y = ψ ( x ) 普西 y = erf ⁡ x 误差 y = ζ ( x ) 黎曼泽塔函数 \begin{align*} y&=|x|\quad(\operatorname{abs}x)&绝对值\\ y&=\lfloor x \rfloor\quad(\operatorname{floor}x)&向下取整\\ y&=\lceil x \rceil\quad(\operatorname{ceil}x)&向上取整\\ y&=\operatorname{sgn} x&符号\\ y&=\operatorname{round}x&取整(四舍五入)\\ y&=\Gamma (x)&阶乘\\ y&=\psi(x)&普西\\ y&=\operatorname{erf}x&误差\\ y&=\zeta(x)&黎曼泽塔函数\\ \end{align*} yyyyyyyyy=x(absx)=x(floorx)=x(ceilx)=sgnx=roundx=Γ(x)=ψ(x)=erfx=ζ(x)绝对值向下取整向上取整符号取整(四舍五入)阶乘普西误差黎曼泽塔函数

图像过于抽象, 这里不给出, 想看的到Geogebra网站看.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值