- 博客(68)
- 收藏
- 关注
原创 SA优化GRU回归预测(matlab代码)
结果可视化:通过绘制SA寻优过程收敛曲线、训练集、验证集和测试集的真实标签与预测标签的曲线对比图,直观地展示了模型的预测效果,便于用户理解算法和模型的性能。数据处理流程清晰:对数据进行了标准化处理,包括Zscore标准化,将数据分为训练集、验证集和测试集,有助于保证模型训练的准确性和可靠性。模块化结构:代码按照功能模块进行划分,清晰地分为数据准备、参数设置、算法处理块和结果展示等部分,提高了代码的可读性和可维护性。数据集划分为训练集、验证集、测试集,比例为8:1:1。平均相对误差(MAPE)
2024-10-21 22:25:28
440
原创 SA优化LSTM回归预测(matlab代码)
结果可视化:通过绘制SA寻优过程收敛曲线、训练集、验证集和测试集的真实标签与预测标签的曲线对比图,直观地展示了模型的预测效果,便于用户理解算法和模型的性能。数据处理流程清晰:对数据进行了标准化处理,包括Zscore标准化,将数据分为训练集、验证集和测试集,有助于保证模型训练的准确性和可靠性。模块化结构:代码按照功能模块进行划分,清晰地分为数据准备、参数设置、算法处理块和结果展示等部分,提高了代码的可读性和可维护性。数据集划分为训练集、验证集、测试集,比例为8:1:1。平均相对误差(MAPE)
2024-10-20 23:03:13
314
原创 最近邻分类预测(matlab代码)
最近邻分类算法(Nearest Neighbor,简称NN)是一种简单有效的分类算法,其核心思想是基于实例的学习,通过计算新样本与训练样本之间的距离,来确定新样本的类别。模型评估: 代码中通过十折交叉验证等方法评估了模型的性能,计算了训练集、验证集和测试集的准确率,并输出了十折验证准确率和运行时长。数据处理流程清晰:对数据进行了标准化处理,包括Zscore标准化,将数据分为训练集、验证集和测试集,有助于保证模型训练的准确性和可靠性。数据集划分为训练集、验证集、测试集,比例为8:1:1。
2024-10-17 21:21:35
373
原创 高斯回归预测(matlab代码)
高斯回归 高斯过程回归(Gaussian Process Regression)是一种非参数的贝叶斯回归方法。数据处理流程清晰:对数据进行了标准化处理,包括Zscore标准化,将数据分为训练集、验证集和测试集,有助于保证模型训练的准确性和可靠性。结果可视化:通过绘制训练集、验证集和测试集的真实标签与预测标签的曲线对比图,直观地展示了模型的预测效果,便于用户理解算法和模型的性能。模块化结构:代码按照功能模块进行划分,清晰地分为数据准备、算法处理块和结果展示等部分,提高了代码的可读性和可维护性。
2024-10-17 20:28:27
526
原创 随机森林回归预测(matlab代码)
随机森林并行训练许多决策树模型,对每个决策树的预测结果进行合并可以降低预测的变化范围,进而改善测试集上的预测性能。数据处理流程清晰:对数据进行了标准化处理,包括Zscore标准化,将数据分为训练集、验证集和测试集,有助于保证模型训练的准确性和可靠性。结果可视化:通过绘制训练集、验证集和测试集的真实标签与预测标签的曲线对比图,直观地展示了模型的预测效果,便于用户理解算法和模型的性能。模块化结构:代码按照功能模块进行划分,清晰地分为数据准备、算法处理块和结果展示等部分,提高了代码的可读性和可维护性。
2024-09-10 22:14:09
343
原创 SA优化随机森林回归预测(matlab代码)
结果可视化:通过绘制SA寻优过程收敛曲线、训练集、验证集和测试集的真实标签与预测标签的曲线对比图,直观地展示了模型的预测效果,便于用户理解算法和模型的性能。数据处理流程清晰:对数据进行了标准化处理,包括Zscore标准化,将数据分为训练集、验证集和测试集,有助于保证模型训练的准确性和可靠性。模块化结构:代码按照功能模块进行划分,清晰地分为数据准备、参数设置、算法处理块和结果展示等部分,提高了代码的可读性和可维护性。数据集划分为训练集、验证集、测试集,比例为8:1:1。平均相对误差(MAPE)
2024-08-23 21:50:36
275
原创 SA优化SVM回归预测(matlab代码)
结果可视化:通过绘制SA寻优过程收敛曲线、训练集、验证集和测试集的真实标签与预测标签的曲线对比图,直观地展示了模型的预测效果,便于用户理解算法和模型的性能。数据处理流程清晰:对数据进行了标准化处理,包括Zscore标准化,将数据分为训练集、验证集和测试集,有助于保证模型训练的准确性和可靠性。模块化结构:代码按照功能模块进行划分,清晰地分为数据准备、参数设置、算法处理块和结果展示等部分,提高了代码的可读性和可维护性。数据集划分为训练集、验证集、测试集,比例为8:1:1。平均相对误差(MAPE)
2024-08-21 22:30:35
321
原创 SA优化朴素贝叶斯分类预测(matlab代码)
模型评估: 代码中通过十折交叉验证等方法评估了模型的性能,计算了训练集、验证集和测试集的准确率,并输出了十折验证准确率和运行时长。此外,还通过绘制分类情况图和混淆矩阵对模型的分类效果进行了可视化展示,帮助更直观地了解模型的性能和分类结果。数据处理流程清晰:对数据进行了标准化处理,包括Zscore标准化,将数据分为训练集、验证集和测试集,有助于保证模型训练的准确性和可靠性。结果可视化: 通过绘制通过绘制树形图,分类情况图和混淆矩阵,直观展示了模型的分类效果,有助于对模型性能进行直观分析和比较。
2024-05-26 21:51:40
503
原创 SA优化决策树回归预测(matlab代码)
结果可视化:通过绘制SA寻优过程收敛曲线、训练集、验证集和测试集的真实标签与预测标签的曲线对比图,直观地展示了模型的预测效果,便于用户理解算法和模型的性能。数据处理流程清晰:对数据进行了标准化处理,包括Zscore标准化,将数据分为训练集、验证集和测试集,有助于保证模型训练的准确性和可靠性。模块化结构:代码按照功能模块进行划分,清晰地分为数据准备、参数设置、算法处理块和结果展示等部分,提高了代码的可读性和可维护性。数据集划分为训练集、验证集、测试集,比例为8:1:1。平均相对误差(MAPE)
2024-05-21 23:24:20
349
原创 SA优化GAM回归预测(matlab代码)
结果可视化:通过绘制SA寻优过程收敛曲线、训练集、验证集和测试集的真实标签与预测标签的曲线对比图,直观地展示了模型的预测效果,便于用户理解算法和模型的性能。数据处理流程清晰:对数据进行了标准化处理,包括Zscore标准化,将数据分为训练集、验证集和测试集,有助于保证模型训练的准确性和可靠性。模块化结构:代码按照功能模块进行划分,清晰地分为数据准备、参数设置、算法处理块和结果展示等部分,提高了代码的可读性和可维护性。数据集划分为训练集、验证集、测试集,比例为8:1:1。平均相对误差(MAPE)
2024-05-19 22:58:51
415
原创 SA优化MLP回归预测(matlab代码)
结果可视化:通过绘制SA寻优过程收敛曲线、训练集、验证集和测试集的真实标签与预测标签的曲线对比图,直观地展示了模型的预测效果,便于用户理解算法和模型的性能。数据处理流程清晰:对数据进行了标准化处理,包括Zscore标准化,将数据分为训练集、验证集和测试集,有助于保证模型训练的准确性和可靠性。模块化结构:代码按照功能模块进行划分,清晰地分为数据准备、参数设置、算法处理块和结果展示等部分,提高了代码的可读性和可维护性。数据集划分为训练集、验证集、测试集,比例为8:1:1。平均相对误差(MAPE)
2024-05-07 19:20:47
460
原创 决策树分类预测(matlab代码)
决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的,期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。模型评估: 代码中通过十折交叉验证等方法评估了模型的性能,计算了训练集、验证集和测试集的准确率,并输出了十折验证准确率和运行时长。数据处理流程清晰:对数据进行了标准化处理,包括Zscore标准化,将数据分为训练集、验证集和测试集,有助于保证模型训练的准确性和可靠性。数据为Excel分类数据集数据。
2024-04-29 21:51:52
1201
原创 SA模拟退火算法优化高斯回归回归预测matlab代码
模拟退火算法(Simulated Annealing,简称SA)是一种用于解决优化问题的启发式算法。数据处理流程清晰:对数据进行了标准化处理,包括Zscore标准化,将数据分为训练集、验证集和测试集,有助于保证模型训练的准确性和可靠性。结果可视化:通过绘制训练集、验证集和测试集的真实标签与预测标签的曲线对比图,直观地展示了模型的预测效果,便于用户理解算法和模型的性能。模块化结构:代码按照功能模块进行划分,清晰地分为数据准备、参数设置、算法处理块和结果展示等部分,提高了代码的可读性和可维护性。
2024-04-28 21:58:24
906
原创 SSA优化MLP回归预测(matlab代码)
结果可视化:通过绘制SSA寻优过程收敛曲线、训练集、验证集和测试集的真实标签与预测标签的曲线对比图,直观地展示了模型的预测效果,便于用户理解算法和模型的性能。数据处理流程清晰:对数据进行了标准化处理,包括Zscore标准化,将数据分为训练集、验证集和测试集,有助于保证模型训练的准确性和可靠性。模块化结构:代码按照功能模块进行划分,清晰地分为数据准备、参数设置、算法处理块和结果展示等部分,提高了代码的可读性和可维护性。数据集划分为训练集、验证集、测试集,比例为8:1:1。均方根误差(RMSE)
2024-04-01 23:38:32
457
原创 CNN-LSTM分类预测(matlab代码)
可视化结果: 代码中包含了对训练过程和预测结果的可视化,包括损失函数的曲线、真实标签与预测标签的对比等,有助于直观地评估模型的性能和结果的准确性。模块化结构: 代码将整个流程模块化,使得代码更易于理解和维护。不同功能的代码块被组织成函数或者独立的模块,使得代码逻辑清晰,结构化程度高。参数化设计: 代码中许多常用的参数被设定为变量,方便用户根据实际情况进行调整和修改,提高了代码的灵活性和可重用性。数据集划分为训练集、验证集、测试集,比例为8:1:1。测试集正确率:0.93333。验证集正确率:0.857。
2024-03-27 23:36:22
594
1
原创 DBO优化GRNN回归预测(matlab代码)
结果可视化:通过绘制DBO寻优过程收敛曲线、训练集、验证集和测试集的真实标签与预测标签的曲线对比图,直观地展示了模型的预测效果,便于用户理解算法和模型的性能。数据处理流程清晰:对数据进行了标准化处理,包括Zscore标准化,将数据分为训练集、验证集和测试集,有助于保证模型训练的准确性和可靠性。模块化结构:代码按照功能模块进行划分,清晰地分为数据准备、参数设置、算法处理块和结果展示等部分,提高了代码的可读性和可维护性。数据集划分为训练集、验证集、测试集,比例为8:1:1。均方根误差(RMSE)
2024-03-24 22:15:51
560
原创 DBO优化朴素贝叶斯分类预测(matlab代码)
模型评估: 代码中通过十折交叉验证等方法评估了模型的性能,计算了训练集、验证集和测试集的准确率,并输出了十折验证准确率和运行时长。结果可视化: 通过绘制通过绘制DBO寻优过程收敛曲线、分类情况图和混淆矩阵,直观展示了模型的分类效果,有助于对模型性能进行直观分析和比较。数据处理流程清晰:对数据进行了标准化处理,包括Zscore标准化,将数据分为训练集、验证集和测试集,有助于保证模型训练的准确性和可靠性。数据集划分为训练集、验证集、测试集,比例为8:1:1。数据为Excel分类数据集数据。
2024-03-23 22:22:28
862
原创 DBO优化最近邻分类预测(matlab代码)
模型评估: 代码中通过十折交叉验证等方法评估了模型的性能,计算了训练集、验证集和测试集的准确率,并输出了十折验证准确率和运行时长。结果可视化: 通过绘制通过绘制DBO寻优过程收敛曲线、分类情况图和混淆矩阵,直观展示了模型的分类效果,有助于对模型性能进行直观分析和比较。数据处理流程清晰:对数据进行了标准化处理,包括Zscore标准化,将数据分为训练集、验证集和测试集,有助于保证模型训练的准确性和可靠性。数据集划分为训练集、验证集、测试集,比例为8:1:1。数据为Excel分类数据集数据。
2024-03-23 22:10:32
424
原创 DBO优化高斯回归预测(matlab代码)
结果可视化:通过绘制DBO寻优过程收敛曲线、训练集、验证集和测试集的真实标签与预测标签的曲线对比图,直观地展示了模型的预测效果,便于用户理解算法和模型的性能。数据处理流程清晰:对数据进行了标准化处理,包括Zscore标准化,将数据分为训练集、验证集和测试集,有助于保证模型训练的准确性和可靠性。模块化结构:代码按照功能模块进行划分,清晰地分为数据准备、参数设置、算法处理块和结果展示等部分,提高了代码的可读性和可维护性。数据集划分为训练集、验证集、测试集,比例为8:1:1。均方根误差(RMSE)
2024-03-22 22:22:23
199
原创 DBO优化LSBoost回归预测(matlab代码)
结果可视化:通过绘制DBO寻优过程收敛曲线、训练集、验证集和测试集的真实标签与预测标签的曲线对比图,直观地展示了模型的预测效果,便于用户理解算法和模型的性能。数据处理流程清晰:对数据进行了标准化处理,包括Zscore标准化,将数据分为训练集、验证集和测试集,有助于保证模型训练的准确性和可靠性。模块化结构:代码按照功能模块进行划分,清晰地分为数据准备、参数设置、算法处理块和结果展示等部分,提高了代码的可读性和可维护性。数据集划分为训练集、验证集、测试集,比例为8:1:1。均方根误差(RMSE)
2024-03-22 22:21:04
385
原创 SSA优化随机森林分类预测(matlab代码)
模型评估:,计算了训练集、验证集和测试集的准确率,并输出了运行时长。结果可视化: 通过绘制通过绘制SSA寻优过程收敛曲线、分类情况图和混淆矩阵,直观展示了模型的分类效果,有助于对模型性能进行直观分析和比较。数据处理流程清晰:对数据进行了标准化处理,包括Zscore标准化,将数据分为训练集、验证集和测试集,有助于保证模型训练的准确性和可靠性。模块化结构:代码按照功能模块进行划分,清晰地分为数据准备、参数设置、算法处理块和结果展示等部分,提高了代码的可读性和可维护性。数据为Excel分类数据集数据。
2024-03-20 17:56:54
329
原创 SSA优化决策树分类预测(matlab代码)
模型评估: 代码中通过十折交叉验证等方法评估了模型的性能,计算了训练集、验证集和测试集的准确率,并输出了十折验证准确率和运行时长。结果可视化: 通过绘制通过绘制SSA寻优过程收敛曲线、分类情况图和混淆矩阵,直观展示了模型的分类效果,有助于对模型性能进行直观分析和比较。数据处理流程清晰:对数据进行了标准化处理,包括Zscore标准化,将数据分为训练集、验证集和测试集,有助于保证模型训练的准确性和可靠性。数据集划分为训练集、验证集、测试集,比例为8:1:1。验证集ACU:0.9375。运行时长:0.267。
2024-03-20 17:55:57
389
原创 SSA优化朴素贝叶斯分类预测(matlab代码)
模型评估: 代码中通过十折交叉验证等方法评估了模型的性能,计算了训练集、验证集和测试集的准确率,并输出了十折验证准确率和运行时长。结果可视化: 通过绘制通过绘制SSA寻优过程收敛曲线、分类情况图和混淆矩阵,直观展示了模型的分类效果,有助于对模型性能进行直观分析和比较。数据处理流程清晰:对数据进行了标准化处理,包括Zscore标准化,将数据分为训练集、验证集和测试集,有助于保证模型训练的准确性和可靠性。数据集划分为训练集、验证集、测试集,比例为8:1:1。数据为Excel分类数据集数据。
2024-03-20 17:54:44
395
原创 SSA优化最近邻分类预测(matlab代码)
模型评估: 代码中通过十折交叉验证等方法评估了模型的性能,计算了训练集、验证集和测试集的准确率,并输出了十折验证准确率和运行时长。结果可视化: 通过绘制通过绘制SSA寻优过程收敛曲线、分类情况图和混淆矩阵,直观展示了模型的分类效果,有助于对模型性能进行直观分析和比较。数据处理流程清晰:对数据进行了标准化处理,包括Zscore标准化,将数据分为训练集、验证集和测试集,有助于保证模型训练的准确性和可靠性。数据集划分为训练集、验证集、测试集,比例为8:1:1。数据为Excel分类数据集数据。
2024-03-18 22:44:46
642
原创 SVM-RF回归预测(matlab代码)
模块化结构: 代码将整个流程模块化,使得代码更易于理解和维护。不同功能的代码块被组织成函数或者独立的模块,使得代码逻辑清晰,结构化程度高。可视化结果: 代码中包含了对训练过程和预测结果的可视化,真实标签与预测标签的对比等,有助于直观地评估模型的性能和结果的准确性。数据集划分为训练集、验证集、测试集,比例为8:1:1。SVM-RF回归预测matlab代码。数据为Excel股票预测数据。代码能正常运行时不负责答疑!平均相对误差(MAPE)平均绝对误差(MAE)均方根误差(RMSE)
2024-03-17 17:12:31
551
原创 MLP-SVM回归预测(matlab代码)
模块化结构: 代码将整个流程模块化,使得代码更易于理解和维护。不同功能的代码块被组织成函数或者独立的模块,使得代码逻辑清晰,结构化程度高。可视化结果: 代码中包含了对训练过程和预测结果的可视化,真实标签与预测标签的对比等,有助于直观地评估模型的性能和结果的准确性。数据集划分为训练集、验证集、测试集,比例为8:1:1。MLP-SVM回归预测matlab代码。数据为Excel股票预测数据。代码能正常运行时不负责答疑!平均相对误差(MAPE)平均绝对误差(MAE)均方根误差(RMSE)
2024-03-17 17:06:22
451
原创 MLP-RF随机森林回归预测(matlab代码)
模块化结构: 代码将整个流程模块化,使得代码更易于理解和维护。不同功能的代码块被组织成函数或者独立的模块,使得代码逻辑清晰,结构化程度高。可视化结果: 代码中包含了对训练过程和预测结果的可视化,真实标签与预测标签的对比等,有助于直观地评估模型的性能和结果的准确性。数据集划分为训练集、验证集、测试集,比例为8:1:1。MLP-RF随机森林回归预测matlab代码。数据为Excel股票预测数据。代码能正常运行时不负责答疑!平均相对误差(MAPE)平均绝对误差(MAE)均方根误差(RMSE)
2024-03-17 00:40:51
869
原创 MLP-DT决策树回归预测(matlab代码)
模块化结构: 代码将整个流程模块化,使得代码更易于理解和维护。不同功能的代码块被组织成函数或者独立的模块,使得代码逻辑清晰,结构化程度高。可视化结果: 代码中包含了对训练过程和预测结果的可视化,真实标签与预测标签的对比等,有助于直观地评估模型的性能和结果的准确性。数据集划分为训练集、验证集、测试集,比例为8:1:1。MLP-DT决策树回归预测matlab代码。数据为Excel股票预测数据。代码能正常运行时不负责答疑!平均相对误差(MAPE)平均绝对误差(MAE)均方根误差(RMSE)
2024-03-17 00:33:43
656
原创 SSA麻雀搜索算法优化随机森林回归预测(matlab代码)
结果可视化:通过绘制SSA寻优过程收敛曲线、训练集、验证集和测试集的真实标签与预测标签的曲线对比图,直观地展示了模型的预测效果,便于用户理解算法和模型的性能。数据处理流程清晰:对数据进行了标准化处理,包括Zscore标准化,将数据分为训练集、验证集和测试集,有助于保证模型训练的准确性和可靠性。模块化结构:代码按照功能模块进行划分,清晰地分为数据准备、参数设置、算法处理块和结果展示等部分,提高了代码的可读性和可维护性。数据集划分为训练集、验证集、测试集,比例为8:1:1。均方根误差(RMSE)
2024-03-15 23:53:23
380
原创 SSA麻雀搜索算法优化决策树回归预测(matlab代码)
结果可视化:通过绘制SSA寻优过程收敛曲线、训练集、验证集和测试集的真实标签与预测标签的曲线对比图,直观地展示了模型的预测效果,便于用户理解算法和模型的性能。数据处理流程清晰:对数据进行了标准化处理,包括Zscore标准化,将数据分为训练集、验证集和测试集,有助于保证模型训练的准确性和可靠性。模块化结构:代码按照功能模块进行划分,清晰地分为数据准备、参数设置、算法处理块和结果展示等部分,提高了代码的可读性和可维护性。数据集划分为训练集、验证集、测试集,比例为8:1:1。均方根误差(RMSE)
2024-03-15 23:49:08
412
原创 SSA麻雀搜索算法优化GAM回归预测(matlab代码)
结果可视化:通过绘制SSA寻优过程收敛曲线、训练集、验证集和测试集的真实标签与预测标签的曲线对比图,直观地展示了模型的预测效果,便于用户理解算法和模型的性能。数据处理流程清晰:对数据进行了标准化处理,包括Zscore标准化,将数据分为训练集、验证集和测试集,有助于保证模型训练的准确性和可靠性。模块化结构:代码按照功能模块进行划分,清晰地分为数据准备、参数设置、算法处理块和结果展示等部分,提高了代码的可读性和可维护性。数据集划分为训练集、验证集、测试集,比例为8:1:1。均方根误差(RMSE)
2024-03-15 23:42:03
348
原创 SSA麻雀搜索算法优化GRNN回归预测(matlab代码)
结果可视化:通过绘制SSA寻优过程收敛曲线、训练集、验证集和测试集的真实标签与预测标签的曲线对比图,直观地展示了模型的预测效果,便于用户理解算法和模型的性能。数据处理流程清晰:对数据进行了标准化处理,包括Zscore标准化,将数据分为训练集、验证集和测试集,有助于保证模型训练的准确性和可靠性。模块化结构:代码按照功能模块进行划分,清晰地分为数据准备、参数设置、算法处理块和结果展示等部分,提高了代码的可读性和可维护性。数据集划分为训练集、验证集、测试集,比例为8:1:1。均方根误差(RMSE)
2024-03-15 23:25:44
408
原创 KOA开普勒优化朴素贝叶斯分类预测(matlab代码)
模型评估: 代码中通过十折交叉验证等方法评估了模型的性能,计算了训练集、验证集和测试集的准确率,并输出了十折验证准确率和运行时长。结果可视化: 通过绘制通过绘制KOA寻优过程收敛曲线、分类情况图和混淆矩阵,直观展示了模型的分类效果,有助于对模型性能进行直观分析和比较。数据处理流程清晰:对数据进行了标准化处理,包括Zscore标准化,将数据分为训练集、验证集和测试集,有助于保证模型训练的准确性和可靠性。数据集划分为训练集、验证集、测试集,比例为8:1:1。数据为Excel分类数据集数据。
2024-03-13 23:58:36
592
原创 贝叶斯优化CNN-GRU回归预测(matlab代码)
可视化结果: 代码中包含了对训练过程和预测结果的可视化,真实标签与预测标签的对比等,有助于直观地评估模型的性能和结果的准确性。
2024-03-10 22:46:20
1186
原创 贝叶斯优化CNN-BiLSTM回归预测(matlab代码)
贝叶斯优化方法则采用贝叶斯思想,通过不断探索各种参数组合的结果,根据已有信息计算期望值,并选择期望值最大的组合作为最佳策略,从而在尽可能少的实验次数下达到最优解。不同功能的代码块被组织成函数或者独立的模块,使得代码逻辑清晰,结构化程度高。可视化结果: 代码中包含了对训练过程和预测结果的可视化,真实标签与预测标签的对比等,有助于直观地评估模型的性能和结果的准确性。参数设置:通过指定参数的值,如贝叶斯迭代次数 BO_iter,使得用户可以灵活地调整算法的参数,以获得更好的性能。均方根误差(RMSE)
2024-03-10 22:35:46
847
1
原创 贝叶斯优化CNN-LSTM回归预测(matlab代码)
贝叶斯优化方法则采用贝叶斯思想,通过不断探索各种参数组合的结果,根据已有信息计算期望值,并选择期望值最大的组合作为最佳策略,从而在尽可能少的实验次数下达到最优解。不同功能的代码块被组织成函数或者独立的模块,使得代码逻辑清晰,结构化程度高。可视化结果: 代码中包含了对训练过程和预测结果的可视化,真实标签与预测标签的对比等,有助于直观地评估模型的性能和结果的准确性。参数设置:通过指定参数的值,如贝叶斯迭代次数 BO_iter,使得用户可以灵活地调整算法的参数,以获得更好的性能。均方根误差(RMSE)
2024-03-09 21:34:22
483
原创 贝叶斯优化BiLSTM分类预测(matlab代码)
参数设置:代码中设置了贝叶斯迭代次数 BO_iter,通过调整这个参数,可以控制贝叶斯优化算法的迭代次数,从而更好地优化模型的超参数。结果展示: 在算法处理块结束后,展示了模型在训练集、验证集和测试集上的准确率,以及程序的运行时长。数据标准化: 对数据进行了 Zscore 标准化处理,使得数据的均值为 0,标准差为 1,有利于提高模型的收敛速度和性能。数据处理: 在数据加载后,对数据进行了划分,包括训练集、验证集和测试集,这有助于评估模型的泛化能力。数据集划分为训练集、验证集、测试集,比例为8:1:1。
2024-03-08 21:06:07
678
原创 KOA优化最近邻分类预测(matlab代码)
模型评估: 代码中通过十折交叉验证等方法评估了模型的性能,计算了训练集、验证集和测试集的准确率,并输出了十折验证准确率和运行时长。结果可视化: 通过绘制通过绘制KOA寻优过程收敛曲线、分类情况图和混淆矩阵,直观展示了模型的分类效果,有助于对模型性能进行直观分析和比较。数据处理流程清晰:对数据进行了标准化处理,包括Zscore标准化,将数据分为训练集、验证集和测试集,有助于保证模型训练的准确性和可靠性。数据集划分为训练集、验证集、测试集,比例为8:1:1。验证集ACU:0.9375。运行时长: 0.122。
2024-03-07 22:14:06
497
原创 KOA优化高斯回归预测(matlab代码)
该算法模拟行星在不同时间的位置和速度,每个行星代表一个候选解,在优化过程中会随机更新,相对于当前找到的最佳解(太阳)。结果可视化:通过绘制KOA寻优过程收敛曲线、训练集、验证集和测试集的真实标签与预测标签的曲线对比图,直观地展示了模型的预测效果,便于用户理解算法和模型的性能。数据处理流程清晰:对数据进行了标准化处理,包括Zscore标准化,将数据分为训练集、验证集和测试集,有助于保证模型训练的准确性和可靠性。数据集划分为训练集、验证集、测试集,比例为8:1:1。平均相对误差(MAPE)
2024-03-06 21:26:56
382
原创 贝叶斯优化BiLSTM回归预测(matlab代码)
贝叶斯优化方法则采用贝叶斯思想,通过不断探索各种参数组合的结果,根据已有信息计算期望值,并选择期望值最大的组合作为最佳策略,从而在尽可能少的实验次数下达到最优解。可视化结果: 代码中包含了对训练过程和预测结果的可视化,包括损失函数的曲线、真实标签与预测标签的对比等,有助于直观地评估模型的性能和结果的准确性。不同功能的代码块被组织成函数或者独立的模块,使得代码逻辑清晰,结构化程度高。参数设置:通过指定参数的值,如贝叶斯迭代次数 BO_iter,使得用户可以灵活地调整算法的参数,以获得更好的性能。
2024-03-05 20:51:59
498
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人