桔子代码
码龄1年
关注
提问 私信
  • 博客:32,471
    32,471
    总访问量
  • 68
    原创
  • 43,328
    排名
  • 450
    粉丝
  • 0
    铁粉

个人简介:分享机器学习、聚类、分类和回归、数学建模等知识及相关代码。

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:安徽省
  • 加入CSDN时间: 2024-02-02
博客简介:

2401_82905754的博客

查看详细资料
  • 原力等级
    当前等级
    4
    当前总分
    559
    当月
    0
个人成就
  • 获得573次点赞
  • 内容获得4次评论
  • 获得460次收藏
  • 代码片获得219次分享
创作历程
  • 68篇
    2024年
成就勋章
兴趣领域 设置
  • 编程语言
    matlab
创作活动更多

2024 博客之星年度评选报名已开启

博主的专属年度盛宴,一年仅有一次!MAC mini、大疆无人机、华为手表等精美奖品等你来拿!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

SA优化GRU回归预测(matlab代码)

结果可视化:通过绘制SA寻优过程收敛曲线、训练集、验证集和测试集的真实标签与预测标签的曲线对比图,直观地展示了模型的预测效果,便于用户理解算法和模型的性能。数据处理流程清晰:对数据进行了标准化处理,包括Zscore标准化,将数据分为训练集、验证集和测试集,有助于保证模型训练的准确性和可靠性。模块化结构:代码按照功能模块进行划分,清晰地分为数据准备、参数设置、算法处理块和结果展示等部分,提高了代码的可读性和可维护性。数据集划分为训练集、验证集、测试集,比例为8:1:1。平均相对误差(MAPE)
原创
发布博客 2024.10.21 ·
359 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

SA优化LSTM回归预测(matlab代码)

结果可视化:通过绘制SA寻优过程收敛曲线、训练集、验证集和测试集的真实标签与预测标签的曲线对比图,直观地展示了模型的预测效果,便于用户理解算法和模型的性能。数据处理流程清晰:对数据进行了标准化处理,包括Zscore标准化,将数据分为训练集、验证集和测试集,有助于保证模型训练的准确性和可靠性。模块化结构:代码按照功能模块进行划分,清晰地分为数据准备、参数设置、算法处理块和结果展示等部分,提高了代码的可读性和可维护性。数据集划分为训练集、验证集、测试集,比例为8:1:1。平均相对误差(MAPE)
原创
发布博客 2024.10.20 ·
194 阅读 ·
3 点赞 ·
0 评论 ·
1 收藏

最近邻分类预测(matlab代码)

最近邻分类算法(Nearest Neighbor,简称NN)是一种简单有效的分类算法,其核心思想是基于实例的学习,通过计算新样本与训练样本之间的距离,来确定新样本的类别。模型评估: 代码中通过十折交叉验证等方法评估了模型的性能,计算了训练集、验证集和测试集的准确率,并输出了十折验证准确率和运行时长。数据处理流程清晰:对数据进行了标准化处理,包括Zscore标准化,将数据分为训练集、验证集和测试集,有助于保证模型训练的准确性和可靠性。数据集划分为训练集、验证集、测试集,比例为8:1:1。
原创
发布博客 2024.10.17 ·
294 阅读 ·
9 点赞 ·
0 评论 ·
1 收藏

高斯回归预测(matlab代码)

高斯回归 高斯过程回归(Gaussian Process Regression)是一种非参数的贝叶斯回归方法。数据处理流程清晰:对数据进行了标准化处理,包括Zscore标准化,将数据分为训练集、验证集和测试集,有助于保证模型训练的准确性和可靠性。结果可视化:通过绘制训练集、验证集和测试集的真实标签与预测标签的曲线对比图,直观地展示了模型的预测效果,便于用户理解算法和模型的性能。模块化结构:代码按照功能模块进行划分,清晰地分为数据准备、算法处理块和结果展示等部分,提高了代码的可读性和可维护性。
原创
发布博客 2024.10.17 ·
427 阅读 ·
7 点赞 ·
0 评论 ·
1 收藏

随机森林回归预测(matlab代码)

随机森林并行训练许多决策树模型,对每个决策树的预测结果进行合并可以降低预测的变化范围,进而改善测试集上的预测性能。数据处理流程清晰:对数据进行了标准化处理,包括Zscore标准化,将数据分为训练集、验证集和测试集,有助于保证模型训练的准确性和可靠性。结果可视化:通过绘制训练集、验证集和测试集的真实标签与预测标签的曲线对比图,直观地展示了模型的预测效果,便于用户理解算法和模型的性能。模块化结构:代码按照功能模块进行划分,清晰地分为数据准备、算法处理块和结果展示等部分,提高了代码的可读性和可维护性。
原创
发布博客 2024.09.10 ·
248 阅读 ·
3 点赞 ·
0 评论 ·
3 收藏

SA优化随机森林回归预测(matlab代码)

结果可视化:通过绘制SA寻优过程收敛曲线、训练集、验证集和测试集的真实标签与预测标签的曲线对比图,直观地展示了模型的预测效果,便于用户理解算法和模型的性能。数据处理流程清晰:对数据进行了标准化处理,包括Zscore标准化,将数据分为训练集、验证集和测试集,有助于保证模型训练的准确性和可靠性。模块化结构:代码按照功能模块进行划分,清晰地分为数据准备、参数设置、算法处理块和结果展示等部分,提高了代码的可读性和可维护性。数据集划分为训练集、验证集、测试集,比例为8:1:1。平均相对误差(MAPE)
原创
发布博客 2024.08.23 ·
230 阅读 ·
10 点赞 ·
0 评论 ·
5 收藏

SA优化SVM回归预测(matlab代码)

结果可视化:通过绘制SA寻优过程收敛曲线、训练集、验证集和测试集的真实标签与预测标签的曲线对比图,直观地展示了模型的预测效果,便于用户理解算法和模型的性能。数据处理流程清晰:对数据进行了标准化处理,包括Zscore标准化,将数据分为训练集、验证集和测试集,有助于保证模型训练的准确性和可靠性。模块化结构:代码按照功能模块进行划分,清晰地分为数据准备、参数设置、算法处理块和结果展示等部分,提高了代码的可读性和可维护性。数据集划分为训练集、验证集、测试集,比例为8:1:1。平均相对误差(MAPE)
原创
发布博客 2024.08.21 ·
285 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

SA优化朴素贝叶斯分类预测(matlab代码)

模型评估: 代码中通过十折交叉验证等方法评估了模型的性能,计算了训练集、验证集和测试集的准确率,并输出了十折验证准确率和运行时长。此外,还通过绘制分类情况图和混淆矩阵对模型的分类效果进行了可视化展示,帮助更直观地了解模型的性能和分类结果。数据处理流程清晰:对数据进行了标准化处理,包括Zscore标准化,将数据分为训练集、验证集和测试集,有助于保证模型训练的准确性和可靠性。结果可视化: 通过绘制通过绘制树形图,分类情况图和混淆矩阵,直观展示了模型的分类效果,有助于对模型性能进行直观分析和比较。
原创
发布博客 2024.05.26 ·
454 阅读 ·
4 点赞 ·
0 评论 ·
7 收藏

SA优化决策树回归预测(matlab代码)

结果可视化:通过绘制SA寻优过程收敛曲线、训练集、验证集和测试集的真实标签与预测标签的曲线对比图,直观地展示了模型的预测效果,便于用户理解算法和模型的性能。数据处理流程清晰:对数据进行了标准化处理,包括Zscore标准化,将数据分为训练集、验证集和测试集,有助于保证模型训练的准确性和可靠性。模块化结构:代码按照功能模块进行划分,清晰地分为数据准备、参数设置、算法处理块和结果展示等部分,提高了代码的可读性和可维护性。数据集划分为训练集、验证集、测试集,比例为8:1:1。平均相对误差(MAPE)
原创
发布博客 2024.05.21 ·
290 阅读 ·
3 点赞 ·
0 评论 ·
3 收藏

SA优化GAM回归预测(matlab代码)

结果可视化:通过绘制SA寻优过程收敛曲线、训练集、验证集和测试集的真实标签与预测标签的曲线对比图,直观地展示了模型的预测效果,便于用户理解算法和模型的性能。数据处理流程清晰:对数据进行了标准化处理,包括Zscore标准化,将数据分为训练集、验证集和测试集,有助于保证模型训练的准确性和可靠性。模块化结构:代码按照功能模块进行划分,清晰地分为数据准备、参数设置、算法处理块和结果展示等部分,提高了代码的可读性和可维护性。数据集划分为训练集、验证集、测试集,比例为8:1:1。平均相对误差(MAPE)
原创
发布博客 2024.05.19 ·
363 阅读 ·
7 点赞 ·
0 评论 ·
4 收藏

SA优化MLP回归预测(matlab代码)

结果可视化:通过绘制SA寻优过程收敛曲线、训练集、验证集和测试集的真实标签与预测标签的曲线对比图,直观地展示了模型的预测效果,便于用户理解算法和模型的性能。数据处理流程清晰:对数据进行了标准化处理,包括Zscore标准化,将数据分为训练集、验证集和测试集,有助于保证模型训练的准确性和可靠性。模块化结构:代码按照功能模块进行划分,清晰地分为数据准备、参数设置、算法处理块和结果展示等部分,提高了代码的可读性和可维护性。数据集划分为训练集、验证集、测试集,比例为8:1:1。平均相对误差(MAPE)
原创
发布博客 2024.05.07 ·
390 阅读 ·
5 点赞 ·
0 评论 ·
6 收藏

决策树分类预测(matlab代码)

决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的,期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。模型评估: 代码中通过十折交叉验证等方法评估了模型的性能,计算了训练集、验证集和测试集的准确率,并输出了十折验证准确率和运行时长。数据处理流程清晰:对数据进行了标准化处理,包括Zscore标准化,将数据分为训练集、验证集和测试集,有助于保证模型训练的准确性和可靠性。数据为Excel分类数据集数据。
原创
发布博客 2024.04.29 ·
1086 阅读 ·
13 点赞 ·
0 评论 ·
12 收藏

SA模拟退火算法优化高斯回归回归预测matlab代码

模拟退火算法(Simulated Annealing,简称SA)是一种用于解决优化问题的启发式算法。数据处理流程清晰:对数据进行了标准化处理,包括Zscore标准化,将数据分为训练集、验证集和测试集,有助于保证模型训练的准确性和可靠性。结果可视化:通过绘制训练集、验证集和测试集的真实标签与预测标签的曲线对比图,直观地展示了模型的预测效果,便于用户理解算法和模型的性能。模块化结构:代码按照功能模块进行划分,清晰地分为数据准备、参数设置、算法处理块和结果展示等部分,提高了代码的可读性和可维护性。
原创
发布博客 2024.04.28 ·
846 阅读 ·
15 点赞 ·
0 评论 ·
3 收藏

SSA优化MLP回归预测(matlab代码)

结果可视化:通过绘制SSA寻优过程收敛曲线、训练集、验证集和测试集的真实标签与预测标签的曲线对比图,直观地展示了模型的预测效果,便于用户理解算法和模型的性能。数据处理流程清晰:对数据进行了标准化处理,包括Zscore标准化,将数据分为训练集、验证集和测试集,有助于保证模型训练的准确性和可靠性。模块化结构:代码按照功能模块进行划分,清晰地分为数据准备、参数设置、算法处理块和结果展示等部分,提高了代码的可读性和可维护性。数据集划分为训练集、验证集、测试集,比例为8:1:1。均方根误差(RMSE)
原创
发布博客 2024.04.01 ·
388 阅读 ·
8 点赞 ·
0 评论 ·
3 收藏

CNN-LSTM分类预测(matlab代码)

可视化结果: 代码中包含了对训练过程和预测结果的可视化,包括损失函数的曲线、真实标签与预测标签的对比等,有助于直观地评估模型的性能和结果的准确性。模块化结构: 代码将整个流程模块化,使得代码更易于理解和维护。不同功能的代码块被组织成函数或者独立的模块,使得代码逻辑清晰,结构化程度高。参数化设计: 代码中许多常用的参数被设定为变量,方便用户根据实际情况进行调整和修改,提高了代码的灵活性和可重用性。数据集划分为训练集、验证集、测试集,比例为8:1:1。测试集正确率:0.93333。验证集正确率:0.857。
原创
发布博客 2024.03.27 ·
476 阅读 ·
3 点赞 ·
1 评论 ·
2 收藏

DBO优化GRNN回归预测(matlab代码)

结果可视化:通过绘制DBO寻优过程收敛曲线、训练集、验证集和测试集的真实标签与预测标签的曲线对比图,直观地展示了模型的预测效果,便于用户理解算法和模型的性能。数据处理流程清晰:对数据进行了标准化处理,包括Zscore标准化,将数据分为训练集、验证集和测试集,有助于保证模型训练的准确性和可靠性。模块化结构:代码按照功能模块进行划分,清晰地分为数据准备、参数设置、算法处理块和结果展示等部分,提高了代码的可读性和可维护性。数据集划分为训练集、验证集、测试集,比例为8:1:1。均方根误差(RMSE)
原创
发布博客 2024.03.24 ·
491 阅读 ·
15 点赞 ·
0 评论 ·
6 收藏

DBO优化朴素贝叶斯分类预测(matlab代码)

模型评估: 代码中通过十折交叉验证等方法评估了模型的性能,计算了训练集、验证集和测试集的准确率,并输出了十折验证准确率和运行时长。结果可视化: 通过绘制通过绘制DBO寻优过程收敛曲线、分类情况图和混淆矩阵,直观展示了模型的分类效果,有助于对模型性能进行直观分析和比较。数据处理流程清晰:对数据进行了标准化处理,包括Zscore标准化,将数据分为训练集、验证集和测试集,有助于保证模型训练的准确性和可靠性。数据集划分为训练集、验证集、测试集,比例为8:1:1。数据为Excel分类数据集数据。
原创
发布博客 2024.03.23 ·
827 阅读 ·
24 点赞 ·
0 评论 ·
1 收藏

DBO优化最近邻分类预测(matlab代码)

模型评估: 代码中通过十折交叉验证等方法评估了模型的性能,计算了训练集、验证集和测试集的准确率,并输出了十折验证准确率和运行时长。结果可视化: 通过绘制通过绘制DBO寻优过程收敛曲线、分类情况图和混淆矩阵,直观展示了模型的分类效果,有助于对模型性能进行直观分析和比较。数据处理流程清晰:对数据进行了标准化处理,包括Zscore标准化,将数据分为训练集、验证集和测试集,有助于保证模型训练的准确性和可靠性。数据集划分为训练集、验证集、测试集,比例为8:1:1。数据为Excel分类数据集数据。
原创
发布博客 2024.03.23 ·
382 阅读 ·
10 点赞 ·
0 评论 ·
3 收藏

DBO优化高斯回归预测(matlab代码)

结果可视化:通过绘制DBO寻优过程收敛曲线、训练集、验证集和测试集的真实标签与预测标签的曲线对比图,直观地展示了模型的预测效果,便于用户理解算法和模型的性能。数据处理流程清晰:对数据进行了标准化处理,包括Zscore标准化,将数据分为训练集、验证集和测试集,有助于保证模型训练的准确性和可靠性。模块化结构:代码按照功能模块进行划分,清晰地分为数据准备、参数设置、算法处理块和结果展示等部分,提高了代码的可读性和可维护性。数据集划分为训练集、验证集、测试集,比例为8:1:1。均方根误差(RMSE)
原创
发布博客 2024.03.22 ·
166 阅读 ·
2 点赞 ·
0 评论 ·
5 收藏

DBO优化LSBoost回归预测(matlab代码)

结果可视化:通过绘制DBO寻优过程收敛曲线、训练集、验证集和测试集的真实标签与预测标签的曲线对比图,直观地展示了模型的预测效果,便于用户理解算法和模型的性能。数据处理流程清晰:对数据进行了标准化处理,包括Zscore标准化,将数据分为训练集、验证集和测试集,有助于保证模型训练的准确性和可靠性。模块化结构:代码按照功能模块进行划分,清晰地分为数据准备、参数设置、算法处理块和结果展示等部分,提高了代码的可读性和可维护性。数据集划分为训练集、验证集、测试集,比例为8:1:1。均方根误差(RMSE)
原创
发布博客 2024.03.22 ·
306 阅读 ·
6 点赞 ·
0 评论 ·
1 收藏
加载更多