python梯度下降法求解三元线性回归系数,并绘制结果

import numpy as np
import matplotlib.pyplot as plt

# 生成随机数据
np.random.seed(0)
X1 = 2 * np.random.rand(100, 1)
X2 = 3 * np.random.rand(100, 1)
X3 = 4 * np.random.rand(100, 1)
y = 4 + 3 * X1 + 5 * X2 + 2 * X3 + np.random.randn(100, 1)

# 合并特征
X_b = np.hstack([np.ones((100, 1)), X1, X2, X3])

# 梯度下降求解多元线性回归系数
eta = 0.1  # 学习率
n_iterations = 1000  # 迭代次数
m = 100  # 样本数

theta = np.random.randn(4, 1)  # 初始化参数

for iteration in range(n_iterations):
    gradients = 2/m * X_b.T.dot(X_b.dot(theta) - y)
    theta -= eta * gradients

# 打印得到的参数
print("得到的参数为:", theta)

# 绘制结果
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')

# 绘制原始数据点
ax.scatter(X1, X2, y, c='b', marker='o')

# 生成新数据点
X1_new = np.linspace(0, 2, 100)
X2_new = np.linspace(0, 3, 100)
X1_new, X2_new = np.meshgrid(X1_new, X2_new)
X3_new = (-theta[0] - theta[1] * X1_new - theta[2] * X2_new) / theta[3]

# 绘制平面
ax.plot_surface(X1_new, X2_new, X3_new, alpha=0.5)

ax.set_xlabel('X1')
ax.set_ylabel('X2')
ax.set_zlabel('y')

plt.show()
 

  • 5
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值