加减乘除的位运算写法

public class Test73 {
    // 使用位运算实现两个整数的加法
    public static int add(int a, int b){
        int ans = a; // 初始化结果为a
        while(b != 0) { // 当b不为0时,继续执行循环
            ans = a^b; // 异或操作,得到不考虑进位的结果
            b = (a & b) << 1; // 与操作后左移一位,得到进位值
            a = ans; // 更新a为不考虑进位的结果
        }

        return ans; // 返回最终结果
    }

    // 实现两个整数的减法,通过调用add方法实现
    public static int minus(int a, int b) {
        return add(a, neg(b)); // 将b取反后相加,相当于a减去b
    }

    // 实现一个整数的取反操作
    public static int neg(int n){
        return add(~n , 1); // 对n进行按位取反,然后加1得到其相反数
    }

    // 使用位运算实现两个整数的乘法
    public static int multiply(int a, int b) {
        int ans = 0; // 初始化结果为0
        while(b != 0) { // 当b不为0时,继续执行循环
            if((b & 1) != 0) { // 如果b是奇数,则将a累加到结果中
                ans = add(ans, a);
            }
            a <<= 1; // a左移一位,相当于乘以2
            b >>>= 1; // b无符号右移一位,相当于除以2
        }
        return ans; // 返回最终结果
    }

    // 定义整数最小值常量
    public static int MIN = Integer.MIN_VALUE;

    // 实现两个整数的除法
    public static int divide(int a, int b) {
        if (a == MIN && b == MIN) {
            // a和b都是整数最小,返回1作为结果
            return 1;
        }
        if (a != MIN && b != MIN) {
            // a和b都不是整数最小,那么正常去除
            return div(a, b);
        }
        if (b == MIN) {
            // a不是整数最小,b是整数最小,返回0作为结果
            return 0;
        }
        // a是整数最小,b是-1,返回整数最大,因为题目里明确这么说了
        if (b == neg(1)) {
            return Integer.MAX_VALUE;
        }
        // a是整数最小,b不是整数最小,b也不是-1
        a = add(a, b > 0 ? b : neg(b)); // 先将a加上b的绝对值
        int ans = div(a, b); // 计算新的a除以b的结果
        int offset = b > 0 ? neg(1) : 1; // 根据b的正负确定偏移量
        return add(ans, offset); // 返回最终结果加上偏移量
    }

    // 必须保证a和b都不是整数最小值,返回a除以b的结果
    public static int div(int a, int b) {
        int x = a < 0 ? neg(a) : a; // 取a的绝对值
        int y = b < 0 ? neg(b) : b; // 取b的绝对值
        int ans = 0; // 初始化结果为0
        for (int i = 30; i >= 0; i = minus(i, 1)) { // 从高位开始遍历
            if ((x >> i) >= y) { // 如果当前位大于等于y
                ans |= (1 << i); // 将对应位设为1
                x = minus(x, y << i); // 减去y左移i位的值
            }
        }
        return a < 0 ^ b < 0 ? neg(ans) : ans; // 根据a和b的正负情况决定是否取反
    }
}

<think>好的,用户现在的问题是关于C语言中C99标准下的加减乘除运算符使用方法,以及如何解决隐式函数声明的问题。之前用户已经问过隐式函数声明的问题,所以需要结合之前的回答和现在的问题来组织内容。 首先,我需要回顾之前的回答,关于隐式函数声明的解决方法,用户已经得到了一些解决方案,比如函数原型声明、包含头文件等。现在用户可能想更深入地了解运算符的使用,同时再次确认如何处理函数声明问题,尤其是在C99标准下。 接下来,用户提供的引用中,引用[1]提到C语言基础,包括运算符和表达式,这可能与当前问题中的加减乘除运算符相关。引用[2]讨论指针,虽然当前问题不直接涉及指针,但可能需要考虑运算符与指针结合的情况,比如指针运算。引用[3]中的代码示例涉及多维数组和指针,但暂时可能不相关,不过用户可能需要了解运算符在复杂数据结构中的使用。 用户的需求可能是希望了解基本运算符的正确用法,以及在C99标准下如何避免常见的函数声明错误。需要将这两部分结合起来回答,确保覆盖运算符的基本语法、注意事项,同时巩固之前提到的隐式函数声明的解决方法,可能还需要举例说明运算符的使用场景,比如在函数中的运算,这时候正确的函数声明就显得重要。 需要检查是否遗漏了运算符的优先级、类型转换等细节,以及C99中是否有新的运算符特性。例如,C99引入了复数支持和新的数学函数,可能需要包含特定头文件如<math.h>,并且正确声明函数以避免隐式声明错误。例如,使用pow函数需要包含math.h并链接数学库。 此外,用户可能对运算符的短路特性感兴趣,比如逻辑与(&&)和逻辑或(||)的短路运算,这在引用[1]的第四课中有提到,但用户的问题集中在加减乘除,可能需要明确区分算术运算符和逻辑运算符,但也可以简要提及以避免混淆。 最后,需要确保回答结构清晰,分点说明运算符的使用,然后再次强调函数声明的重要性,结合之前的解决方案,并生成相关问题,帮助用户进一步学习。</think>### C语言运算符使用与C99函数声明问题解答 #### 一、C语言加减乘除运算符基础用法 1. **基本算术运算符**(优先级:`* / %` > `+ -`) ```c int a = 10 + 5; // 加法 int b = 20 - 3; // 减法 int c = 7 * 6; // 乘法(注意:乘号不可省略如2x需写作2*x) float d = 15.0 / 4; // 除法(整数相除会丢失小数部分) int mod = 17 % 5; // 取模(操作数必须为整数) ``` 2. **类型转换规则** - 整型与浮点型运算时自动提升为浮点型 ```c printf("%f", 5 + 3.14); // 输出8.140000 ``` 3. **复合赋值运算符** ```c int x = 10; x += 5; // 等价于x = x + 5 x *= 2; // 等价于x = x * 2 ``` #### 二、C99标准下的函数声明要求 1. **函数原型强制声明** - 所有函数必须在使用前声明(对比早期C标准允许隐式声明) ```c // 错误示例:未声明直接调用 int main() { printf("%d", square(5)); // 触发隐式函数声明警告[^1] return 0; } int square(int x) { return x*x; } // 正确写法:添加函数原型 int square(int); // 声明 int main() { printf("%d", square(5)); // 合法调用 return 0; } ``` 2. **数学函数的特殊要求** - 使用`pow()`、`sqrt()`等数学函数时需: ```c #include <math.h> // 必须包含头文件 #include <stdio.h> int main() { double y = pow(2.0, 3.0); // 正确声明后使用 printf("%f", y); return 0; } ``` **编译时需链接数学库**: ```bash gcc -std=c99 -lm main.c ``` #### 三、常见错误对照表 | 错误场景 | 错误示例 | 修正方案 | |---------|----------|----------| | 未声明自定义函数 | `sum(3,5);` 无前置声明 | 添加`int sum(int, int);` | | 数学函数未包含头文件 | `sqrt(4);` 无`#include <math.h>` | 添加头文件包含 | | 运算符误用 | `5 / 2` 期望2.5 | 改为`5.0 / 2` | | 过时函数使用 | `gets(str);` | 改用`fgets(str, size, stdin);`[^1] | #### 四、进阶应用示例 ```c #include <stdio.h> #include <math.h> // 函数原型声明 double calculate_hypotenuse(double a, double b); int main() { double leg1 = 3.0, leg2 = 4.0; printf("Hypotenuse: %.2f", calculate_hypotenuse(leg1, leg2)); return 0; } // 函数定义 double calculate_hypotenuse(double a, double b) { return sqrt(a*a + b*b); // 正确使用数学库函数 } ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值