自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(255)
  • 收藏
  • 关注

原创 深度网络的顽疾:梯度消失问题

因此,当网络的激活值落入Sigmoid函数的“饱和区”时,这些近乎为零的导数项就会像一个不断调低的音量旋钮,将反向传播的梯度信号层层衰减,最终导致传递到前面层的梯度消失殆尽。经过足够多层的连乘,这种指数级的衰减效应会使得初始层收到的梯度信号微乎其微,即使激活函数的导数是1也无济于事。然而,随着网络层数的增加,一个难题,梯度消失(Vanishing Gradient)便会浮出水面,它如同一个无形的枷锁,阻碍着深度网络的训练。一个不合适的损失函数与输出层激活函数的组合,会从一开始就"掐灭"梯度的火苗。

2026-01-07 20:51:32 364

原创 虚拟语气详解

当条件从句和结果主句所表示的时间不一致时(如一个指过去,一个指现在),动词形式需要根据各自所指的时间进行调整。语气是一种动词形式,用以表达说话人的意图或态度。,可以省略if,并将这些词提至主语之前。(用于所有人称和数,be动词常用。在正式文体中,如果条件从句中含有。(用于所有人称和数)(用于所有人称和数)(用于所有人称和数)(用于所有人称和数)

2026-01-07 20:40:49 342

原创 命令替换(Command Substitution)详解

这是Shell编程中最强大、最常用的功能之一!

2026-01-07 12:28:39 139

原创 分页(Paging)完全解析

三个核心特性透明性:程序无需知道分页存在灵活性:虚拟连续 ↔ 物理分散保护性:每页独立权限一个核心机制虚拟地址 → [MMU+页表] → 物理地址↓ ↓程序视角的地址 实际内存位置在PintOS中的实践实现页表管理处理缺页异常实现页面置换算法支持栈增长最终理解:分页是现代操作系统的内存魔术——通过巧妙的映射,让有限、碎片化的物理内存,为每个程序提供看似无限、连续、私有的地址空间。这是虚拟化技术的基石,也是理解现代计算的关键!

2026-01-07 12:25:26 288

原创 上下文切换与PCB

PCB是容器:存放进程的所有状态信息上下文是内容:PCB中需要保存/恢复的执行状态上下文切换是操作:把CPU状态写入PCB,或从PCB读到CPU没有PCB:无法保存上下文 → 无法多任务没有上下文切换:PCB只是静态数据 → 无法实现并发关键理解:PCB让进程有了"记忆",上下文切换让进程能够"暂停和继续"。这是现代操作系统的基石——通过快速切换,让每个进程都觉得自己独占CPU,而PCB就是实现这个魔术的"记忆仓库"。在您的PintOS项目中,您将亲手创建PCB结构(),并实现上下文切换函数。

2026-01-07 11:55:57 189

原创 进程控制块(PCB)的灵魂:栈指针SP、程序计数器PC

寄存器比喻丢失后果恢复必要性PC书签/进度条不知道执行到哪里必须保存,否则从头开始SP当前工作台数据丢失、无法返回必须保存,否则栈混乱其他寄存器工具状态效率降低,但可重算最好保存,但可舍弃核心洞见PC定义了执行的"位置"→ 没有它,执行流完全丢失SP定义了数据的"上下文"→ 没有它,函数调用链断裂两者共同定义了进程的完整执行状态这就是为什么教授强调这两个寄存器——它们是进程状态的骨架。

2026-01-07 11:46:04 383

原创 执行上下文(Execution Context)

执行上下文 = 程序执行的"快照"所有寄存器值 + 内存状态 + 资源状态主要目的保存/恢复:让程序可以暂停后继续隔离保护:每个进程有自己的上下文状态管理:跟踪执行进度关键理解上下文切换是多任务的基础上下文大小影响切换性能现代CPU有硬件优化(如快速上下文切换)简单说:执行上下文就是计算机的"记忆",记住每个程序执行到哪里、状态如何,这样才能在多个程序间快速切换,让用户感觉它们在"同时运行"。

2026-01-07 11:40:57 163

原创 监管者模式(supervisor mode)和sudo(pseudo)不同

场景需要什么程序需要访问硬件设备监管者模式(通过驱动程序)用户需要安装软件sudo+ 监管者模式程序需要分配内存用户模式申请 → 系统调用 →监管者模式分配用户需要修改系统配置sudo执行编辑器 → 编辑器通过系统调用访问文件一句话总结监管者模式是硬件强制的内核/用户隔离机制,sudo是软件管理的用户权限提升工具。它们在不同层面保障系统安全,共同构建了现代操作系统的安全体系。

2026-01-07 11:38:13 361

原创 每个进程都有自己的虚拟地址空间。为什么不直接操作物理地址?

关键点:我说“同一个物理地址空间”,指的是内存芯片的物理集合,而不是指进程使用相同的地址值。概念含义举例物理地址空间内存硬件的实际寻址范围一台电脑有16GB RAM,地址范围0x0-0x3FFFFFFFF虚拟地址空间进程“看到”的内存视图每个进程都以为自己有0x0-0x7FFFFFFF(2GB用户空间)同一个物理地址空间所有进程的数据都存储在这台电脑的同一套内存硬件中进程A和B的数据都在那16GB RAM里不同的物理地址进程的数据存放在内存硬件的不同位置。

2026-01-07 11:31:33 622

原创 正态分布的 contour(等高线)是椭圆,什么时候是正的,什么时候是斜着的?

条件等高线形状CovXY0CovXY0(即ρ0\rho = 0ρ0轴对齐的椭圆(可能扁,但不斜)CovXY≠0CovXY0(即ρ≠0\rho \ne 0ρ0斜着的椭圆所以,只要你画的两个正态分布联合起来有相关性(协方差 ≠ 0),contour 就会是斜的椭圆。

2026-01-07 09:47:58 615

原创 Docker文件与本地文件,系统

方面在容器内操作影响在 Windows 操作影响文件系统默认只影响容器,除非挂载目录只影响 Windows软件安装只安装在容器内只安装在 Windows进程运行在容器内运行在 Windows 运行网络端口需要-p映射才能从 Windows 访问可直接访问。

2026-01-06 18:33:50 320

原创 .git folder

对于一个项目来说,拥有 .git 文件夹的目录就是它的本地Git仓库。你可以删除项目文件,但只要 .git 文件夹还在,Git就仍然“认识”这个仓库,并可以通过历史记录恢复文件。我们看到它包含了Read Me文件以及一个.git文件夹。这个文件夹表示这是一个Git仓库。当你使用 git clone 命令时,Git会自动为你创建这个 .git 文件夹,并从远程仓库拉取所有必要的数据填充它。.git 文件夹是一个隐藏文件夹(在Unix/Linux/macOS系统中,以点.开头的文件或文件夹默认是隐藏的)。

2026-01-05 09:54:32 141

原创 All my git commands & vim commands

git push。

2026-01-04 13:34:33 364

原创 Windows + Docker 完整操作指南:鼠标开发 + 容器提交

Mermaid 渲染失败: Lexical error on line 5. Unrecognized text.:你可以享受 Windows 的鼠标便利,但最终必须通过容器的命令行提交。这样既符合课程要求,又保持开发效率。8. git commit -m "提交作业"10. GitHub Desktop查看提交。1. 鼠标新建project1文件夹。6. ./program (测试)2. VS Code编写代码。3. 自动同步到共享目录。GitHub 课程仓库。Windows 主机。

2026-01-04 12:59:35 594

原创 make all in Makefile

但原作者可能是想通过变量来定义,但格式不正确。的模式,确保没有残留的旧文件影响新编译。看这个 Makefile 的语法,在这个 Makefile 中,

2026-01-03 19:26:58 306

原创 SSH, GitHub

在你的课程练习中,使用 SSH 密钥可以让 Docker 容器安全地访问你的 GitHub 仓库,而不需要每次输入密码或 token。它加密所有通信,防止窃听和中间人攻击。,而 SSH 密钥是一种。

2026-01-03 19:11:12 430

原创 Docker, virtual machine, WSL, Ubuntu

这就是为什么在课程中,老师让你先确保Docker Desktop运行正常,因为它依赖于WSL2(在Windows上),而WSL2提供了运行Linux容器所需的环境。

2026-01-03 19:08:17 333

原创 C 语言,守护进程(daemon)

你刚刚用纯 C 语言实现了一个符合 Unix 标准的守护进程!启动后立即返回 shell不依赖任何终端PPID=1,由系统托管在后台默默工作自动清理资源这就是nginxsshdcrond等经典服务背后的底层原理!

2025-12-19 11:50:41 304

原创 机器学习中所有可以调整的超参数(考试/自己调参用)

网络架构参数虽然重要,但通常基于领域知识选择。,因为它直接影响收敛速度和最终性能。

2025-12-12 09:55:48 939 1

原创 Honorlock和GradeScope考试技术问题

不要再次从 Canvas quiz 里面点TA给你嵌入的 GradeScope链接-如果你从这里再点进去的话,你会发现你写一半的GradeSope考试已经被提交了!不用管它,你仍然可以继续考试,就点开你刚才的考试页面就行。✅ 如果中途你低头写草稿的时候,屏幕变灰了,中间显示 Honorlock 不能检测到你的脸,你被中断了,然后这个时候不要慌。回到监考页面之后,记住要点击你刚才写的GradeScope的网页,

2025-12-07 13:12:21 229

原创 咖啡馆墙错觉

这样做可以平衡掉原本导致边缘“漂移”的强度差异。修正后的图像虽然在高倍放大下观察边缘仍有些微波动,但这种波动已经弱到人眼无法清晰感知,从而大大减弱或消除了倾斜的错觉。咖啡馆墙错觉是一种视觉错觉,其图像由黑白棋盘格交替排列而成,中间有灰色灰泥线分隔。这种排列会造成水平灰泥线看起来是倾斜的错觉。以下是 University of Maryland 的 Cornelia Fermuller 教授的分析。理解了错觉产生的原因,就可以通过调整图像来抵消这种效果。具体方法是在棋盘格瓷砖的。

2025-11-21 10:53:33 41

原创 确定一个形状所需的最少点数:确定一个圆要几个点?

解释:虽然是在3维空间,但平面本身的自由度是3(例如,由方程 Ax+By+Cz=1 中的三个系数决定)。每个点提供1个约束(因为必须满足平面方程),所以需要3个点。解释:n个点直接提供了2n个约束。但如果多边形是正n边形,约束大大增加,自由度降至3(中心坐标和半径),因此最少点数变为2(需已知边数n)。确定一个形状所需的最少点数,其实就是找出能唯一确定该形状(包括位置、大小和方向)的最小约束数量。约束越多(如正方形比矩形约束多),所需的点数就越少。自由度:2n (n个顶点的坐标)最少点数:3(三点不共线)

2025-11-21 10:30:50 147

原创 反向传播中算梯度什么时候有 transpose

转置是为了让矩阵乘法的维度匹配,从而得到正确形状的梯度。

2025-11-17 22:33:50 244

原创 为什么叫“线性”?为什么叫“代数”?

为什么叫“线性”?为什么叫“代数”?为什么叫“线性”?为什么叫“代数”?其实,“线性代数”的名字已经很好地解释了它是什么。让我们来拆解一下这个名字。“代数”这个词听起来很学术,但其实它的核心思想很简单:用符号代表数字。就像我们在小学时学会用x和y代替具体的数字一样。比如方程 x + 2 = 5,我们知道如何找出它:只需要把 x 看成平常的数字,用算术的定理即可推导出 x。代数让我们能够抽象地思考,找出解决问题的通用方法,而不是每次都重新计算。它是算术的升级版——从处理具体数字升级到处理关系和模式。“线性”指

2025-11-07 13:42:28 338

原创 最小二乘法(Least Square):由几何投影直接得到正规方程

假设我们有一堆数据点x1y1x2y2xmymx1​y1​x2​y2​xm​ym​y≈β0β1xy≈β0​β1​x但现实里,数据往往不完全落在直线上。那怎么办?我们希望找到一条“最合适”的直线,让点到直线的距离尽可能小。“最小二乘”的想法就是:把所有误差平方加起来,要求这个总和最小。

2025-11-07 13:41:01 996

原创 三个好思路:SQL并行化处理、混淆矩阵和特征交叉

在数据科学领域,我们常被复杂的算法和庞大的数据集所震撼。然而真正推动项目成功的,往往是一些精妙的核心思路。这些思路看似简单,却能在关键时刻提供深刻洞察。今天,我们就深入探讨三个这样的思路:SQL并行化处理、混淆矩阵和特征交叉。

2025-11-07 13:39:05 767

原创 数学史上的十个伟大时刻

GIMPS(互联网梅森质数大搜索)项目则代表了数学探索在数字时代的新形态——通过全球分布式计算,凝聚无数志愿者的计算力,共同寻找最大的已知质数,展现了现代协作科研的力量。这种对严格逻辑证明的追求,确立了数学的公理化思想,成为所有科学理论的 rigor(严谨性)之源。这一时刻辉煌地证明了,最抽象的数学思维在现实世界中能产生决定性的巨大影响,并直接催生了现代计算机科学的诞生。其中,中国的“辗转相除法”与西方的“欧几里得算法”异曲同工,正是人类智慧在不同文明中交相辉映的绝佳例证。数学,是全人类共同的语言。

2025-11-07 13:37:07 481

原创 【NLP】Penn Treebank 与 Parsing:让计算机看懂句子结构

语法树是理解句子结构的可视化工具Parsing是自动构建语法树的过程为句法分析提供了统一标准和训练数据PCFG让解析器学会在歧义中选择最合理的解释以后当你看到机器翻译、智能客服、语音助手答得又快又准时,不妨想想,在它的大脑里,很可能有一棵棵看不见的语法树,默默帮它看懂语言。最近几年,为了适应更加灵活复杂的语言结构,又更进一步——现在会使用神经网络RNN、LSTM、来学习和直接生成完整的话。它们不需要显式写规则,也不必只依赖统计句法树,而是直接从大规模语料学习模式。这种语法结构是隐式学到。

2025-11-07 13:33:51 663

原创 “和 AI 聊天,也要会撩”:提示词工程(Prompt Engineering)其实就是和它说人话

简单说,提示词 Prompt 就是你给 AI 的那句“开场白”,用来告诉它你想让它干嘛。但和人不同,AI 的“理解力”全靠你给它的文字线索。你说“写一篇文章”,它可能给你流水账;你说“写一篇100字以内、口语化、有趣的文章”,它才知道该怎么发挥。

2025-11-07 13:32:42 416

原创 布尔代数化简:用数学魔法简化电路设计

布尔代数(Boolean Algebra)是数字电路设计的核心数学工具,它用简单的“真(1)”和“假(0)”来描述逻辑关系。今天,我们就来聊聊如何用布尔代数定理化简逻辑表达式,并解析一个完整例子,让你彻底搞懂!,就是通过一系列数学定理,把复杂的逻辑表达式变得更简洁,从而让电路更高效、更省成本。只要掌握这些定理,你就能像解数学方程一样轻松化简逻辑电路!

2025-11-07 13:31:01 705

原创 99%的人都误解了“AI”这个词!看看我们上课怎么讲,AI包含什么?

人工智能就像一个巨大的套娃——最外层是AI,里面是机器学习,再里面是深度学习,而NLP是其中一个特别擅长处理语言的成员。AI的历史经历了起起落落,从最早的逻辑推理,到机器学习的崛起,再到深度学习的爆发,每一步都让机器离“像人一样思考”更近了一点。所以,下次有人再提到AI,不要仅仅联想到大语言模型比如 DeepSeek 等等,也不要再联想一个家务机器人了——你可以,但是那仅仅是几种AI而已。而是要考虑,他是不是指“机器学习”?“深度学习”?“神经网络”?

2025-11-07 13:28:47 573

原创 【CV】 图像接缝裁剪(Seam Carving)算法

图像接缝裁剪是一种内容感知的图像缩放技术,与传统缩放方法不同,它能够智能地保留图像中重要的内容区域,同时移除相对不重要的像素区域。该算法由Shai Avidan和Ariel Shamir于2007年提出,已成为计算机视觉和图像处理领域的重要技术。在图像处理中,接缝是指一条从图像顶部到底部的连通路径垂直接缝Syiyi∣i1MSy{(iyi))∣i1...M连续性约束∣yi−yi−1∣≤k∣yi−yi−1∣≤k(通常k=1)

2025-10-30 12:14:12 632

原创 【CV】Meshgrid:向量化计算的隐形引擎,解锁CV编程效率革命

在计算机视觉编程中,meshgrid 能在关键时刻将代码效率提升数个量级。这个网格创建工具是向量化计算的桥梁,让我们告别低效的循环,拥抱并行计算。

2025-10-26 10:27:19 354

原创 【CV】神经网络中哪些参数需要被学习?

学习/更新:指的是通过梯度下降直接调整g1g^{(1)}g1g2g^{(2)}g2W1W^{(1)}W1W2W^{(2)}W2这些参数的值。改变zzz和aaa的值会间接改变,因为它们是参数和输入数据的函数。当参数被更新后,同样的输入再次通过网络时,会产生新的zzz和aaa。它们是计算梯度所必需的中间变量,而不是学习的最终目标。因此,在训练过程中,

2025-10-17 21:42:13 894

原创 【CV】泊松图像融合

这实际上是从拉普拉斯算子推导出来的离散形式,确保在每个像素点处颜色变化平滑。

2025-10-14 11:55:21 1023

原创 C++ :: <<

负责“指地盘”,<<负责“把数据塞进流”。看见就读成:“用标准库的 cout,把右边这些东西依次输出。

2025-10-07 20:51:18 420

原创 矩阵乘法 @ 和 .T

【代码】矩阵乘法 @ 和 .T。

2025-10-07 19:52:18 131

原创 最大池化 Max pooling 是干什么的?人话讲

步骤图片A (眼睛在左下)图片B (眼睛在左上)说明卷积层输出[0.2, 0.1][0.1, 0.2]探测器看到了眼睛,但激活的精确位置不同。最大池化后0.9不管在哪,只要区域内有反应,输出就是最大值。“我们不在乎是哪个像素激活,只在乎区域内的最大响应”例子中,我们不在乎激活值是来自(0,1)位置还是(0,0)位置,我们只关心这个2x2区域里有一个很高的值0.9。“获得空间不变性”物体(眼睛)在图像空间中微小移动(平移)将不再影响输出。这就是“空间不变性”。图片B的眼睛移动了,但输出没变。

2025-10-04 20:17:16 419

原创 感知机(Perceptron)损失函数和优化方法

概念说明感知机线性二分类模型决策边界w⋅xb0w⋅xb0损失函数原始是正确分类数,松弛后是线性函数优化方法穷举、梯度下降、随机梯度下降更新规则w←wαyixiw←wαyi​xi​b←bαyib←bαyi​。

2025-10-01 20:22:02 915

原创 每日自我肯定

You get everything you want, because that’s just the way it is. Things are always working out in your favor. You’re so lucky. What’s meant for you never misses you. You’re always at the right place at the right time. You’re just that lucky, miracles effort

2025-09-25 22:27:23 220

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除