代码随想录算法训练营第42天| 01背包问题,你该了解这些|01背包问题,你该了解这些! 滚动数组 |416. 分割等和子集
(****************************************************************)
(挺难的,有点超出我的理解水平,不是很理解—好吧看半天不明白,先粘答案吧,慢慢来)
正式开始背包问题,背包问题还是挺难的,虽然大家可能看了很多背包问题模板代码,感觉挺简单,但基本理解的都不够深入。
如果是直接从来没听过背包问题,可以先看文字讲解慢慢了解 这是干什么的。
如果做过背包类问题,可以先看视频,很多内容,是自己平时没有考虑到位的。
背包问题,力扣上没有原题,大家先了解理论,今天就安排一道具体题目。
详细布置
01背包问题 二维
https://programmercarl.com/%E8%83%8C%E5%8C%85%E7%90%86%E8%AE%BA%E5%9F%BA%E7%A1%8001%E8%83%8C%E5%8C%85-1.html
视频讲解:https://www.bilibili.com/video/BV1cg411g7Y6
#include <bits/stdc++.h>
using namespace std;
int n, bagweight;// bagweight代表行李箱空间
void solve() {
vector<int> weight(n, 0); // 存储每件物品所占空间
vector<int> value(n, 0); // 存储每件物品价值
for(int i = 0; i < n; ++i) {
cin >> weight[i];
}
for(int j = 0; j < n; ++j) {
cin >> value[j];
}
// dp数组, dp[i][j]代表行李箱空间为j的情况下,从下标为[0, i]的物品里面任意取,能达到的最大价值
vector<vector<int>> dp(weight.size(), vector<int>(bagweight + 1, 0));
// 初始化, 因为需要用到dp[i - 1]的值
// j < weight[0]已在上方被初始化为0
// j >= weight[0]的值就初始化为value[0]
for (int j = weight[0]; j <= bagweight; j++) {
dp[0][j] = value[0];
}
for(int i = 1; i < weight.size(); i++) { // 遍历科研物品
for(int j = 0; j <= bagweight; j++) { // 遍历行李箱容量
// 如果装不下这个物品,那么就继承dp[i - 1][j]的值
if (j < weight[i]) dp[i][j] = dp[i - 1][j];
// 如果能装下,就将值更新为 不装这个物品的最大值 和 装这个物品的最大值 中的 最大值
// 装这个物品的最大值由容量为j - weight[i]的包任意放入序号为[0, i - 1]的最大值 + 该物品的价值构成
else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
}
}
cout << dp[weight.size() - 1][bagweight] << endl;
}
int main() {
while(cin >> n >> bagweight) {
solve();
}
return 0;
}
01背包问题 一维
https://programmercarl.com/%E8%83%8C%E5%8C%85%E7%90%86%E8%AE%BA%E5%9F%BA%E7%A1%8001%E8%83%8C%E5%8C%85-2.html
视频讲解:https://www.bilibili.com/video/BV1BU4y177kY
// 一维dp数组实现
#include <iostream>
#include <vector>
using namespace std;
int main() {
// 读取 M 和 N
int M, N;
cin >> M >> N;
vector<int> costs(M);
vector<int> values(M);
for (int i = 0; i < M; i++) {
cin >> costs[i];
}
for (int j = 0; j < M; j++) {
cin >> values[j];
}
// 创建一个动态规划数组dp,初始值为0
vector<int> dp(N + 1, 0);
// 外层循环遍历每个类型的研究材料
for (int i = 0; i < M; ++i) {
// 内层循环从 N 空间逐渐减少到当前研究材料所占空间
for (int j = N; j >= costs[i]; --j) {
// 考虑当前研究材料选择和不选择的情况,选择最大值
dp[j] = max(dp[j], dp[j - costs[i]] + values[i]);
}
}
// 输出dp[N],即在给定 N 行李空间可以携带的研究材料最大价值
cout << dp[N] << endl;
return 0;
}
416. 分割等和子集
本题是 01背包的应用类题目
https://programmercarl.com/0416.%E5%88%86%E5%89%B2%E7%AD%89%E5%92%8C%E5%AD%90%E9%9B%86.html
视频讲解:https://www.bilibili.com/video/BV1rt4y1N7jE
class Solution {
public:
bool canPartition(vector<int>& nums) {
int sum=0;
// dp[i]中的i表示背包内总和
// 题目中说:每个数组中的元素不会超过 100,数组的大小不会超过 200
// 总和不会大于20000,背包最大只需要其中一半,所以10001大小就可以了
vector<int>dp(10001,0);
for(int i=0;i<nums.size();i++)
{
sum+=nums[i];
}
// 也可以使用库函数一步求和
// int sum = accumulate(nums.begin(), nums.end(), 0);
if(sum%2==1) return false;
int target=sum/2;
for(int i=1;i<nums.size();i++)
for(int j=target;j>=nums[i];j--)// 每一个元素一定是不可重复放入,所以从大到小遍历
{
dp[j]=max(dp[j],dp[j-nums[i]]+nums[i]);
}
// 集合中的元素正好可以凑成总和target
if(dp[target]==target) return true;
return false;
}
}
;```