- 博客(3)
- 收藏
- 关注
原创 机器学习总结(评估模型)
1.错误率(E):通常把分类错误的样本数占样本总数的比列称为错误率例如:m个样本中有a个样本分类错误,则,相应的称为精度。2.误差:学习器在实际预测输出与样本的真实输入之间的差异。3.训练误差(经验误差):学习器在训练集上的误差。4.泛化误差:在新样本上的误差。(希望能够得到泛化误差小的学习器)5.过拟合:当学习器把训练样本学得“太好”了的时候,很可能已经把训练样本自身的一些特点当做了所有潜在样本都会具有的一般性质,这样就会导致泛化能力下降,这种现象在机器学习中称为过拟合。
2024-06-27 17:22:44 1648 1
原创 小白对于JAVA的知识总结
格式1:数据类型 [] 数组名格式2:数据类型 数组名 []java中的数组必须先初始化,然后才能使用二维数组就是一个元素为一维数组的元素格式1:数据类型 [][] 变量名 = new 数据类型 [m][n];m表示这个二维数组有多少个一维数组n表示每一个一维数组的元素个数格式2:数据类型 [][] 变量名 = new 数据类型 [m][];
2024-06-27 17:08:04 1449
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人