- 博客(4)
- 收藏
- 关注
原创 【Datawhale X 李宏毅苹果书 AI夏令营】机器学习框架
除此,也可以用更少的特征,或者早停(early stopping)、正则化(regularization)和丢弃法(dropoutmethod)等,也能降低损失值。如果所预测的模型与真实模型相差太大,那么不论如何更改参数,都无法使定义模型与真实模型相匹配。在有限的数据集下,可以将一项作为验证集,另两项作为训练集, 对模型进行训练。上图对三个蓝色的点进行限定,规定了它只能是一个二次曲线,则可以更加轻易地得到符合真实情况的模型。但此时,无法确保深模型的预测性比原模型更好,那么,则需要根据结果再次更改模型。
2024-09-03 16:25:15 172
原创 【Datawhale X 李宏毅苹果书 AI夏令营】了解线性模型
对上图进行分析,模型0与红线交于y轴,模型1上行部分与红线第一段上行部分平行,其余部分则平行与x轴。这时,对于红线的模型而言,分段线性模型的准确度远大于单一的线性模型。但是此时的模型依旧比较呆板,比如除夕等特殊日期,机器无法察觉,就会出错。中的模型进行分析,估计次数仅仅为前一天的真实观看次数进行计算,误差较大。对真实观看数据进行分析后得知,数据呈七天一循环,周五与周六为观看的极小值。虽然4曾在2017-2020年间的表现更好,但对于机器而言,预测是更为重要的功能,所以我们应该选择3层,来确保预测准确性。
2024-08-30 16:57:54 386
原创 【Datawhale X 李宏毅苹果书 AI夏令营】深度学习基础
这就是泰勒级数近似(Tayler series appoximation)。对于既定的函数L(θ) ,给定参数θ′ ,则θ′ 附近的 L(θ) 可近似为。4、临界点(critical point),梯度为零的点统称为临界点。1、局部最小值(local minimum)。3、局部最大值(local maximum)。2、鞍点(saddle)。
2024-08-24 18:41:01 130
原创 【Datawhale X 李宏毅苹果书 AI夏令营】机器学习
机器学习就是让机器具备找一个函数的能力”,与人类给机器一个函数让机器运算不同,机器学习可以自主学习,从而找到最恰当的函数。例如语音转文字,就是机器主动寻找匹配的函数,将语音转化为函数。2、Classification:Given options (classes), the function outputs the correct one.如检测邮件是否为垃圾邮件。1、Regression:The function outputs a scalar.如预测视频的点击量,pm2.5的浓度。
2024-08-23 21:25:54 202
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人