- 博客(8)
- 收藏
- 关注
原创 Datawhale X 李宏毅苹果书 AI夏令营第五期 task03机器学习框架&实践方法论
我们经常用过拟合、欠拟合来定性地描述模型是否很好地解决了特定的问题。从定量的角度来说,可以用模型的偏差(Bias)与方差(Variance)来描述模型的性能。在有监督学习中,模型的期望泛化误差可以分解成三个基本量的和---偏差、方差和噪声。:指的是由所有采样得到的大小为mm的训练数据集训练出的所有模型的输出的平均值和真实结果之间的差异,度量了模型的期望预测与真实结果的偏离程度,即刻画了模型本身的拟合能力。偏差通常是由于我们对模型做了错误的假设所导致的,比如真实模型是某个二次函数,但我们假设模型是一次函数。
2024-09-03 23:08:40 338
原创 Datawhale X 李宏毅苹果书 AI夏令营第五期 task02
指的是用于机器学习算法训练的数据集合。这些数据集合通常包含已知的输入和对应的输出,而机器学习模型会基于这些数据来学习如何进行预测和决策。在训练数据中,每个输入都会被标注一个正确的输出,即标签。最终,通过不断优化模型的训练和调整,机器学习算法可以使用这些已知的数据来作出预测,并学习发现输入和输出之间的规律。Mean Error:是指在等精度测量中,所有测量值的随机误差的算术平均值。它可以通过多次测量在相同条件下得出,用来评估测量的精度和准确度。通常用标准差或方均根误差来计算。
2024-08-31 22:18:21 584
原创 Datawhale AI 夏令营 第五期 从零上手CV竞赛学习者 Task03
在之前我们学习了 YOLO 模型的基础使用,接下来将学习进阶的知识。
2024-08-31 21:50:15 609
原创 Datawhale AI 夏令营 第五期 从零上手CV竞赛学习者 Task02
物体检测是计算机视觉领域的一个重要任务,它的目标是在图像或视频帧中识别和定位感兴趣的物体。物体检测算法不仅要识别图像中的对象属于哪个类别,还要确定它们在图像中的具体位置,通常以边界框(bounding box)的形式表示。输入:物体检测算法的输入通常是一张图像或视频帧。特征提取:算法使用深度学习模型(如卷积神经网络CNN)来提取图像的特征。这些特征捕捉了图像中的视觉信息,为后续的物体识别和定位提供基础。候选区域生成。
2024-08-29 18:11:10 749
原创 Datawhale X 李宏毅苹果书 AI夏令营第五期 task01
本方向的核心学习目标是——通过和 李宏毅老师 21年的机器学习课程视频,入门机器学习,并尝试学习深度学习,展开代码实践(选修)主要内容源于,选取了的部分内容,在这些基础上进行了一定的原创,补充了不少除这门公开课之外的深度学习相关知识。为了尽可能地降低阅读门槛,笔者对这门公开课的精华内容进行选取并优化,对所涉及的公式都给出详细的推导过程,对较难理解的知识点进行了重点讲解和强化,以方便读者较为轻松地入门。
2024-08-27 23:44:40 585
原创 Datawhale AI 夏令营 第五期 从零上手CV竞赛学习者 Task01
视频数据为mp4格式,标注文件为json格式,每个视频对应一个json文件。利用图像处理和计算机视觉技术 开发一套智能识别系统,自动检测和分类摄像头捕获的视频中,城市管理中的违规行为。注1:若真实目标框与预测框IOU大于0.5,则判定目标正确识别。通过对摄像头捕获的视频进行分析,自动准确识别违规行为,并及时向管理部门发出告警,以实现更高效的城市管理。bbox:检测到的违规行为矩形框的坐标,[xmin,ymin,xmax,ymax]形式。注2:若该视频中没有某个类别的目标,则此类别计算均值时,忽略该视频。
2024-08-26 21:59:35 251
原创 Datawhale AI夏令营第四期 AIGC文生图方向 task02
文件中的数据,并将其转换为 Pandas DataFrame,然后保存为 CSV 文件,并且将图片保存到./data/lora_dataset_processed/train文件夹下。OpenAI 推出DALL-E模型(一个深度学习算法模型,是GPT-3 语言处理模型的一个衍生版本),能直接从文本提示“按需创造”风格多样的图形设计。来说,了解AI生图的能力的玩法,可以更好地针对自己的业务进行开发和使用,甚至攻克难题开发更实用的工具。,通过海量的图库和文本描述的深度神经网络学习,最终的目标是。
2024-08-14 22:46:51 427
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人