1、提取影像的重叠区控制点代码:
processing.run("saga:imagerecognition", {
'GRIDS': 'image1.tif;image2.tif', # 输入的影像文件列表
'METHOD': 1, # 使用SIFT特征匹配
'OUTPUT': 'control_points.shp' # 输出控制点的矢量文件
})
代码解释:
(1)processing.run():
这是QGIS中的一个Python命令,用于调用不同的算法。该命令的第一个参数是算法名称,第二个参数是参数字典,包含了算法需要的输入和输出文件。
(2)"saga:imagerecognition":
这个算法属于SAGA工具箱中的图像识别功能。该算法的作用是识别影像之间的相似部分(重叠区域),并提取特征点作为控制点,用于影像配准。
(3)'GRIDS': 'image1.tif;image2.tif':
这是算法的输入参数,指定了两幅影像(image1.tif 、 image2.tif)。这些影像将进行重叠区域的特征提取和匹配。通过重叠区域来寻找相同地物的特征点,是影像拼接、配准过程中非常重要的步骤。
(4)'METHOD': 1:
这里设置了METHOD参数为1,表示使用SIFT(尺度不变特征变换)方法来进行特征匹配。SIFT方法通过寻找图像中的关键点(如角点、边缘等)来提取特征,并匹配两个影像中相同区域的特征。
SIFT方法在处理具有旋转、缩放、视角变化的图像时特别有效,因此能保证在不同条件下找到匹配点。
(5)'OUTPUT': 'control_points.shp':
这个参数指定了输出文件的路径和格式。输出的结果是一个矢量文件(control_points.shp),其中包含从输入影像中提取的控制点。
代码作用:
此代码可用于后续的配准步骤,基于SIFT的特征匹配方法,可以自动化地提取不同影像间的重叠区域,并且获得精准的控制点。SIFT特征能够处理旋转、缩放等变形,因此即使影像之间存在一定角度或比例上的差异,也能准确提取到控制点,显著提高配准精度。
2、基于热红外波段温度阈值识别田埂的代码:
processing.run("gdal:rastercalculator", {
'INPUT_A': 'thermal.tif', # 输入的热红外影像
'BAND_A': 1, # 选择热红外影像的第一个波段(假设热红外影像有多个波段)
'FORMULA': '(A < 25) ? 1 : 0', # 如果温度小于25°C则为田埂,输出1,否则为0
'OUTPUT': 'boundary_mask.tif' # 输出的二值化掩模影像
})
代码解释:
(1)processing.run("gdal:rastercalculator", {...}):
这是QGIS中的一个调用GDAL工具箱的函数,使用rastercalculator算法来执行栅格数据的计算。它可以基于不同的输入栅格图像及给定的公式来进行运算,从而生成新的栅格图像。
这种方式可以进行像素级的运算,并结合条件逻辑(例如阈值判断)来分类影像。
(2)'INPUT_A': 'thermal.tif':
这指定了输入栅格影像,即热红外影像(thermal.tif)。热红外影像通常用来获取地表的温度信息,尤其适用于热区的分析,比如田埂、农田等区域的温度特征。
(3)'BAND_A': 1:
这里选择了热红外影像的第一个波段(通常是热红外波段),即选择了该影像的温度数据作为输入。在某些影像中,热红外数据可能包含多个波段,因此需要指定具体的波段进行处理。
(4)'FORMULA': '(A < 25) ? 1 : 0':
这是进行栅格计算的核心公式。A代表的是第一个波段的值(即温度数据)。该公式的含义是:
如果像素值(温度)小于25°C,则该像素被认为是田埂(或者说是低温区域),并将该像素值设为1。
否则,像素值将被赋值为0,表示该区域不是田埂(可能是其他类型的地物或温度较高的区域)。
这实际上是一个条件判断,通过温度阈值来将区域进行分类。
'OUTPUT': 'boundary_mask.tif':
这个参数指定了输出结果的文件路径及文件名。在这里,输出的是一个新的二值栅格影像(boundary_mask.tif),该影像表示的是田埂区域的掩模。
输出的栅格图像将包含1和0的值,其中1表示田埂区域,0表示其他区域。
代码作用:
此代码可用于后续的裁剪步骤,通过热红外影像的温度数据,自动提取了低于25°C的区域,通过这种方式,能够有效避免某些地物(如植被)对结果的干扰,可以快速识别出田埂区域。