逻辑是怎样炼成的?

以下文章来源于小K算法 ,作者小K算法

如有侵权,联系删除

01故事起源

假设现在有下面三个问题,你觉得它们有没有什么共同点?

图片

我猜你应该觉得没有共同点,甚至是毫无关联,没关系,我们接着往下看。

02抽象逻辑

到底什么是抽象,什么是逻辑?

2.1抽象

先看一下这个图,你觉得是什么?

图片

如果这样,它像不像一条狗呢?

图片

抽象就是找出本质的共同特征,把一个东西想像成另一个东西。上面的过程就是抽象的过程。

2.2逻辑

那如果我问你上面的这个线条是怎么画出来的呢?

图片

其实这就是由3个一笔画的线条拼起来的。
逻辑其实是一种规律或者规则,可以是自己定义的,只要它符合定义的边界划分。上面用不同的线条,把一个整体拆分成小的部分,这就是一种逻辑。

2.3作用

抽象能力用于问题建模,逻辑能力用于推理。这些能力强的人,可以看到其他人看不到的一些信息,说它是一种超能力也不为过。

图片

03回到开局的问题

那之前的3个问题有没有共同点呢?或者说能不能找出一种特征,抽象成一个统一的模型?

假设我们建造了一个万能机器,它可以解决所有的问题,只要输入一些相关的信息,就可以得到想要的结果。那么建造机器的过程就是抽象建模的过程。

图片

那怎么让它运转呢,当然它不是烧油的,是烧脑的,所以就要用逻辑能力来驱动它正常运转。

其实所有的问题都可以应用这种统一的模型。
聪明的同学应该已经发现了,这在数学中其实就是一个函数,建模也就是找出这个函数。

图片

到这里,我想你肯定会问,那怎么建模呢,问题各种各样,怎么才能建造出能解决对应问题的模型?

划重点:
其实小K在思考问题时,一般都不是直接从建模的地方下手。机器有可能很复杂无法快速构建,如果你见过类似的当然可以直接套用,对于陌生的问题,在所有人看来都是一个黑盒,并不清楚内部的结构。
所以更多时候都是从已知的信息开始,一步一步的推出内部结构。

那要怎么推呢?
首先要了解如何解读已知信息。这就要提到生物中常用的对照实验法,以及物理中常用的控制变量法,欲知详情,且听我慢慢分解。

04对照实验法

比如想研究影响小树苗成长的因素有哪些?
光照应该对于小树苗成长有影响,那就进行两组对照实验,一组有光照,一组无光照,经过一段时间观察不同组小树苗的成长情况。
如果生长情况相同,就说明光照没有影响,如果不同就说明光照有影响。

图片

影响小树苗成长的因素有可能不只光照,也许还有其它的因素,比如水分。
这时的对照实验,就要先保证两组有相同的光照,然后一组水分充足,一组水分不足。经过一段时间观察不同组小树苗的成长情况。
如果生长情况相同,就说明水分没有影响,如果不同就说明水分有影响。

图片

需要注意的就是,如果有多个影响因素,要保证除研究的因素外,其它的条件都相同,否则无法确定不同结果是哪个因素导致的。

那这个思想对于我们的逻辑有什么用呢?
每个问题都会有多个已知条件,到底哪些才是真正能够影响问题的,就可以通过类似的方法进行思想实验。比如更改一些条件,看会不会引起问题的本质变化,这样可以帮助我们梳理出关键信息,屏蔽其它的干扰信息,从而减小分析的难度。

05控制变量法

上面的方法是研究不同的因素对于问题的影响,接着就要研究同一个因素,不同量对于问题的影响,这在物理中经常运用。
假设要研究电流与电压之间的关系,可以先固定电阻不变,然后增大或者减小电压,观察电流的变化。发现电流与电压的变化成正比,如此就可以推断出电流与电压之间的关系。

图片

那这个思想对于我们的逻辑又有什么用呢?
回看上面提到的统一模型中的万能机器,机器内部是一个黑盒,推断内部结构时,就可以通过改变外部的条件,观察输入与输出之间的变化。多尝试改变几次就可以大概感觉出之间的关系了,当然这里更多的也是进行思想实验。

06总结

整个问题建模的过程其实并不是一步到位,都是通过已知信息先得到一个初步的结论,然后再通过上一局的结论进而推出下一步的结论,再经过多次分析推断才能最终得到想要的结果。
人的大脑在识别信息时也是一层一层的分析,现在的神经网络算法就是参考人的大脑的分析过程。

图片

上面介绍的几种不同的思维方式主要是帮助大家思考,遇到问题时可以尝试不同的角度去分析,但具体的问题还是要具体分析,没有统一的模型可以直接套用。

### 构建和训练大规模机器学习模型 #### 使用 Apache TinkerPop 3 的优势 Apache TinkerPop 是一个图计算框架,能够处理复杂的关系型数据结构。对于某些特定类型的机器学习应用,尤其是涉及大量关联关系的数据集时,使用该工具可以有效提升性能并简化开发流程[^1]。 #### 数据准备阶段 在开始之前,需准备好高质量的训练样本集合。这通常意味着收集足够的正负例来代表实际应用场景中的分布情况。同时也要注意特征工程的重要性——通过合理的属性选取与转换操作使得原始资料更适合后续分析工作的要求。 #### 模型定义部分 当涉及到具体实现层面的选择上,则可以根据业务需求挑选合适的算法作为基础构件。文中提及了几种常见的选项:逻辑回归适用于二分类任务;神经网络擅长捕捉复杂的非线性模式,在图像识别等领域表现优异;而决策树及其变体则易于解释且能较好应对缺失值等问题。 ```python from sklearn.linear_model import LogisticRegression model = LogisticRegression() ``` 以上展示了基于 Scikit-Learn 库创建简单逻辑回归实例的方式。当然这只是众多可能性之一,其他更高级别的架构同样可以通过类似的方法快速搭建起来。 #### 训练环节概述 一旦选定好目标函数形式之后就可以着手于参数估计方面的工作了。所谓“训练”,实际上是指不断调整内部权重直至找到一组最优解的过程。这一过程中会反复迭代地比较预测结果同真实标签间的差异程度,并据此更新当前状态下的各项系数取值直到满足收敛条件为止。 ```python X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) model.fit(X_train, y_train) predictions = model.predict(X_test) ``` 上述代码片段说明了一个典型的学习周期内所经历的主要步骤,包括但不限于划分验证子集、执行拟合运算以及最终做出推断等动作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值