[优选算法专题四.前缀和——NO.29 和为 K 的子数组]

题目链接:

和为 K 的子数组

题目描述:

题目解析:

核心思路

利用前缀和哈希表的结合,将时间复杂度从暴力解法的 O (n²) 优化至 O (n)。

1️⃣前缀和定义:设 sum[i] 表示数组前 i 个元素的和(即 nums[0] + nums[1] + ... + nums[i-1]),则子数组 nums[j..i-1] 的和可表示为 sum[i] - sum[j]

2️⃣问题转化:若子数组 nums[j..i-1] 的和为 k,则 sum[i] - sum[j] = k,即 sum[j] = sum[i] - k。因此,对于当前前缀和 sum[i],只需统计此前出现过的 sum[j] = sum[i] - k 的次数,即可得到以 i-1 为结尾的、和为 k 的子数组个数。

3️⃣哈希表作用:用哈希表 hash 存储前缀和的值该值出现的次数,实时记录遍历过程中前缀和的出现频率,避免重复计算。

关键细节

  • 初始化 hash[0] = 1:当 sum = k 时(即子数组从索引 0 开始到当前位置),sum - k = 0,此时需用 hash[0] = 1 来统计这种情况,否则会遗漏。

  • 遍历顺序:先检查 hash 中是否存在 sum - k,再将当前 sum 存入 hash,避免将当前 sum 误算入统计(因为子数组必须是之前的前缀和当前前缀和的差)。

复杂度分析

  • 时间复杂度:O (n),其中 n 是数组长度。遍历数组一次,哈希表的插入和查询操作均为 O (1)(平均情况)。
  • 空间复杂度:O (n),哈希表最多存储 n+1 个不同的前缀和(极端情况下所有前缀和均不重复)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值