[优选算法专题四.前缀和——NO.26二维前缀和]

题目链接:

二维前缀和

题目描述:

题目解析:


代码逐部分解析

读入原始数据
int n = 0, m = 0, q = 0;
cin >> n >> m >> q;
vector<vector<int>> arr(n + 1, vector<int>(m + 1));
for (int i = 1; i <= n; i++) {
    for (int j = 1; j <= m; j++) {
        cin >> arr[i][j];
    }
}
  • n:二维数组的行数,m:列数,q:查询次数。
  • 定义二维数组 arr,大小为 (n+1)×(m+1),下标从 1 开始(方便前缀和计算,避免处理边界时的额外判断)。
  • 双层循环读入 n×m 个元素,存储到 arr 中。
预处理前缀和矩阵 dp
vector<vector<long long>> dp(n + 1, vector<long long>(m + 1)); // 防止溢出
for (int i = 1; i <= n; i++) {
    for (int j = 1; j <= m; j++) {
        dp[i][j] = dp[i-1][j] + dp[i][j-1] + arr[i][j] - dp[i-1][j-1];
    }
}
  • dp 是前缀和矩阵,类型为 long long(避免多个整数累加时溢出)。
  • dp[i][j] 表示:以 arr[1][1] 为左上角、arr[i][j] 为右下角的矩形区域的所有元素之和。
  • 计算公式推导dp[i][j] = 上方区域和(dp[i-1][j]) + 左方区域和(dp[i][j-1]) + 当前元素(arr[i][j]) - 重复计算的左上角区域和(dp[i-1][j-1])。(画图理解更直观:上方和左方区域重叠的部分被加了两次,需要减去一次)。
处理查询并输出结果
int x1 = 0, y1 = 0, x2 = 0, y2 = 0;
while (q--) {
    cin >> x1 >> y1 >> x2 >> y2;
    cout << dp[x2][y2] - dp[x1-1][y2] - dp[x2][y1-1] + dp[x1-1][y1-1] << endl;
}
  • 每次查询输入矩形的左上角坐标 (x1, y1) 和右下角坐标 (x2, y2)
  • 区域和计算公式:目标区域和 = 大矩形和(dp[x2][y2]) - 上方多余区域(dp[x1-1][y2]) - 左方多余区域(dp[x2][y1-1]) + 重复减去的左上角区域(dp[x1-1][y1-1])。(同样通过画图可清晰理解:减去上方和左方后,左上角重叠部分被多减了一次,需要加回)。

总结

  • 时间复杂度:预处理前缀和为 O(n*m),每次查询为 O(1),总复杂度为 O(n*m + q),适合大量查询的场景。
  • 空间复杂度O(n*m)(存储原始数组和前缀和矩阵)。
  • 关键点:数组下标从 1 开始简化边界处理,使用 long long 避免整数溢出。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值