任务数量超过线程池负荷了怎么办?拒绝策略安排起来!

我们先来把上面的假设用代码实现一下:

第一步:创建Spring Boot应用,根据上面的假设写好线程池配置。

@EnableAsync

@SpringBootApplication

public class Chapter78Application {

public static void main(String[] args) {

SpringApplication.run(Chapter78Application.class, args);

}

@EnableAsync

@Configuration

class TaskPoolConfig {

@Bean

public Executor taskExecutor1() {

ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor();

executor.setCorePoolSize(2);

executor.setMaxPoolSize(2);

executor.setQueueCapacity(2);

executor.setKeepAliveSeconds(60);

executor.setThreadNamePrefix(“executor-1-”);

return executor;

}

}

}

第二步:用@Async注解实现一个部分任务

@Slf4j

@Component

public class AsyncTasks {

public static Random random = new Random();

@Async(“taskExecutor1”)

public CompletableFuture doTaskOne(String taskNo) throws Exception {

log.info(“开始任务:{}”, taskNo);

long start = System.currentTimeMillis();

Thread.sleep(random.nextInt(10000));

long end = System.currentTimeMillis();

log.info(“完成任务:{},耗时:{} 毫秒”, taskNo, end - start);

return CompletableFuture.completedFuture(“任务完成”);

}

}

第三步:编写测试用例

@Slf4j

@SpringBootTest

public class Chapter78ApplicationTests {

@Autowired

private AsyncTasks asyncTasks;

@Test

public void test2() throws Exception {

// 线程池配置:core-2,max-2,queue=2,同时有5个任务,出现下面异常:

// org.springframework.core.task.TaskRejectedException: Executor [java.util.concurrent.ThreadPoolExecutor@59901c4d[Running, pool size = 2,

// active threads = 0, queued tasks = 2, completed tasks = 4]] did not accept task: java.util.concurrent.CompletableFuture$AsyncSupply@408e96d9

long start = System.currentTimeMillis();

// 线程池1

CompletableFuture task1 = asyncTasks.doTaskOne(“1”);

CompletableFuture task2 = asyncTasks.doTaskOne(“2”);

CompletableFuture task3 = asyncTasks.doTaskOne(“3”);

CompletableFuture task4 = asyncTasks.doTaskOne(“4”);

CompletableFuture task5 = asyncTasks.doTaskOne(“5”);

// 一起执行

CompletableFuture.allOf(task1, task2, task3, task4, task5).join();

long end = System.currentTimeMillis();

log.info(“任务全部完成,总耗时:” + (end - start) + “毫秒”);

}

}

执行一下,可以类似下面这样的日志信息:

2021-09-22 17:33:08.159 INFO 21119 — [   executor-1-2] com.didispace.chapter78.AsyncTasks       : 开始任务:2

2021-09-22 17:33:08.159 INFO 21119 — [   executor-1-1] com.didispace.chapter78.AsyncTasks       : 开始任务:1

org.springframework.core.task.TaskRejectedException: Executor [java.util.concurrent.ThreadPoolExecutor@3e1a3801[Running, pool size = 2, active threads = 2, queued tasks = 2, completed tasks = 0]] did not accept task: java.util.concurrent.CompletableFuture$AsyncSupply@64968732

at org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor.execute(ThreadPoolTaskExecutor.java:324)

at java.util.concurrent.CompletableFuture.asyncSupplyStage(CompletableFuture.java:1604)

at java.util.concurrent.CompletableFuture.supplyAsync(CompletableFuture.java:1830)

at org.springframework.aop.interceptor.AsyncExecutionAspectSupport.doSubmit(AsyncExecutionAspectSupport.java:274)

at org.springframework.aop.interceptor.AsyncExecutionInterceptor.invoke(AsyncExecutionInterceptor.java:129)

at org.springframework.aop.framework.ReflectiveMethodInvocation.proceed(ReflectiveMethodInvocation.java:186)

at org.springframework.aop.framework.CglibAopProxy$CglibMethodInvocation.proceed(CglibAopProxy.java:750)

at org.springframework.aop.framework.CglibAopProxy$DynamicAdvisedInterceptor.intercept(CglibAopProxy.java:692)

at com.didispace.chapter78.AsyncTasks E n h a n c e r B y S p r i n g C G L I B EnhancerBySpringCGLIB EnhancerBySpringCGLIBc7e8d57b.doTaskOne()

at com.didispace.chapter78.Chapter78ApplicationTests.test2(Chapter78ApplicationTests.java:51)

at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)

at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)

at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)

Caused by: java.util.concurrent.RejectedExecutionException: Task java.util.concurrent.CompletableFuture$AsyncSupply@64968732 rejected from java.util.concurrent.ThreadPoolExecutor@3e1a3801[Running, pool size = 2, active threads = 2, queued tasks = 2, completed tasks = 0]

at java.util.concurrent.ThreadPoolExecutor$AbortPolicy.rejectedExecution(ThreadPoolExecutor.java:2063)

at java.util.concurrent.ThreadPoolExecutor.reject(ThreadPoolExecutor.java:830)

at java.util.concurrent.ThreadPoolExecutor.execute(ThreadPoolExecutor.java:1379)

at org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor.execute(ThreadPoolTaskExecutor.java:321)

… 74 more

从异常信息org.springframework.core.task.TaskRejectedException: Executor [java.util.concurrent.ThreadPoolExecutor@3e1a3801[Running, pool size = 2, active threads = 2, queued tasks = 2, completed tasks = 0]] did not accept task:中,可以明确知道:第5个任务因为超过了执行线程+缓冲队列长度,而被拒绝了。

所有,默认情况下,线程池的拒绝策略是:当线程池队列满了,会丢弃这个任务,并抛出异常。

配置拒绝策略

自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数Java工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年Java开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Java开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新!

如果你觉得这些内容对你有帮助,可以扫码获取!!(备注Java获取)

img

最后

权威指南-第一本Docker书

引领完成Docker的安装、部署、管理和扩展,让其经历从测试到生产的整个开发生命周期,深入了解Docker适用于什么场景。并且这本Docker的学习权威指南介绍了其组件的基础知识,然后用Docker构建容器和服务来完成各种任务:利用Docker为新项目建立测试环境,演示如何使用持续集成的工作流集成Docker,如何构建应用程序服务和平台,如何使用Docker的API,如何扩展Docker。

总共包含了:简介、安装Docker、Docker入门、使用Docker镜像和仓库、在测试中使用Docker、使用Docker构建服务、使用Fig编配Docke、使用Docker API、获得帮助和对Docker进行改进等9个章节的知识。

image

image

image

image

关于阿里内部都在强烈推荐使用的“K8S+Docker学习指南”—《深入浅出Kubernetes:理论+实战》、《权威指南-第一本Docker书》,看完之后两个字形容,爱了爱了!
《互联网大厂面试真题解析、进阶开发核心学习笔记、全套讲解视频、实战项目源码讲义》点击传送门即可获取!
…(img-SdvPRKzx-1712757471382)]

[外链图片转存中…(img-OkBTsfXZ-1712757471382)]

关于阿里内部都在强烈推荐使用的“K8S+Docker学习指南”—《深入浅出Kubernetes:理论+实战》、《权威指南-第一本Docker书》,看完之后两个字形容,爱了爱了!
《互联网大厂面试真题解析、进阶开发核心学习笔记、全套讲解视频、实战项目源码讲义》点击传送门即可获取!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值