不定长滑动窗口算法详细解释(带例题的详细解法)

本文参考:

灵茶山艾府

题单:分享丨【题单】滑动窗口(定长/不定长/多指针) - 力扣(LeetCode)

我的上一篇文章:关于定长滑动窗口的解法,建议刚学的先学好第一篇的内容,不定长某些情况要复杂很多

定长滑动窗口算法详细解释(带例题的详细解法)-CSDN博客

不定长滑动窗口通用解法:

通用解法:

        首先要明确题目要求,是否可以使用滑动窗口做,是否求的连续区间

初始化两个端点:left,right分别表示窗口的左右两个端点

右端点移动:right增加,元素进入滑动窗口

判断:判断窗口是否满足条件

            当满足条件:维持条件的情况下,左端点移动

                                更新答案(窗口最大值,最小值,满足条件的窗口数量)

例题一:最大值,例题二:最小值,例题三:满足条件的窗口数量

例题一:

3. 无重复字符的最长子串 - 力扣(LeetCode)

非常经典的不定长滑动窗口题目,求满足条件的窗口大小的最小值

题目描述解析:

题目提示是
子字符串 是字符串中连续的 非空 字符序列。

所以可以理解成不定长滑动窗口,找一个滑动窗口长度的最大值。

解题思路:

题目要求是找出“不含有的字符的子串”
可以用一个set进行维护

(当然s 由英文字母、数字、符号和空格组成,可以直接用一个128长度的数组)

窗口左端点left,右端点right。起始都为0

right右移并且把新元素添加进入set

当set中已经有新元素的时候
表示现在的窗口所包含的字串已经不满足“含有不重复字符”

移动左端点使得窗口内子串满足条件

更新这个过程中的窗口大小的最大值即可

实际例子理解:

示例 1:

### 关于滑动窗口算法的示例题目及其解析 #### 题目一:最小覆盖子串 (Minimum Window Substring) 此问题是经典的滑动窗口应用之一,其核心在于找到能够覆盖目标字符串 `T` 的最小子串。以下是对此问题的具体分析: - **输入**: 字符串 `S` 和字符串 `T`。 - **输出**: 返回 `S` 中包含 `T` 所有字符的最短子串。 ##### 解题思路 为了求解这个问题,可以通过维护一个动态窗口来逐步缩小搜索范围[^3]。具体步骤如下: 1. 使用两个指针分别代表窗口的起始位置和结束位置。 2. 不断扩展右边界直到窗口内的字符包含了所有的目标字符。 3. 当满足条件时,尝试收缩左边界以寻找更小的可能解。 4. 记录过程中发现的所有符合条件的窗口,并最终返回长度最小的那个。 这种方法相比暴力枚举大大减少了计算量,因为它避免了重复检查已经验证过的部分数据[^2]。 #### 示例代码实现 下面提供了一个 Python 实现版本作为参考: ```python from collections import Counter def minWindow(s, t): need = Counter(t) # 统计t中各字母的数量 missing = len(t) # 缺失字符总数 i = I = J = 0 # 初始化索引变量 for j, char in enumerate(s): # 开始遍历s中的每一个字符 if need[char] > 0: # 如果当前字符是所需的一个,则减少缺失数 missing -= 1 need[char] -= 1 # 更新need字典 if missing == 0: # 当前窗口已完全包含t while i < j and need[s[i]] < 0: need[s[i]] += 1 # 收缩左侧直至不能再收缩为止 i += 1 if not J or j-i < J-I: # 检查是否找到了新的最优解 I,J = i,j need[s[i]] += 1 # 准备移动i之前恢复状态 missing += 1 # 并增加一次missing以便继续探索其他可能性 i += 1 # 移动i到下一个位置重新开始查找过程 return s[I:J+1] print(minWindow("ADOBECODEBANC", "ABC")) # 输出:"BANC" ``` 上述程序展示了如何利用双指针技巧配合哈希表完成对最小覆盖子串的有效检索操作[^4]。 --- ### 总结 通过以上案例可以看出,在处理涉及连续序列的问题时,尤其是那些需要频繁调整区间端点的任务上,采用滑动窗口策略往往能显著提升效率。它不仅简化了复杂度较高的穷尽式搜索方法,还使得解决方案更加直观易懂[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值