网络爬虫学习(爬取图片)

1. 理解主题核心

Python图片爬取通常涉及库如requestsBeautifulSoupScrapy来抓取和下载网络图像。相关文献可能涵盖:

  • 爬虫技术原理(如HTTP请求、HTML解析)。
  • 反爬虫策略应对(如User-Agent设置、代理IP)。
  • 图像处理(如格式转换、存储优化)。
  • 应用场景(如数据集构建、内容分析)。

2:.推荐中文文献数据库

中文文献主要存储在以下权威数据库中,您可以通过这些平台搜索相关论文、期刊或书籍:

  1. 中国知网(CNKI)
    • 网址:www.cnki.net
    • 特点:覆盖最全的中文学术资源,包括硕博论文、期刊和会议论文。
  2. 万方数据
    • 网址:www.wanfangdata.com.cn
    • 特点:专注于科技和工程领域,提供高质量论文和报告。
  3. 维普资讯
    • 网址:www.cqvip.com
    • 特点:以期刊为主,适合查找最新研究动态。
  4. 超星期刊
    • 网址:qikan.chaoxing.com
    • 特点:免费资源较多,适合快速获取开放获取文献。

建议优先使用CNKI或万方,因为它们索引更全面。

通用代码框架:

import requests

def getHTMLText(url):
    try:
        r = requests.get(url, timeout=30)
        r.raise_for_status()
        r.encoding = r.apparent_encoding
        return r.text
    except:
        return "产生异常"
if __name__ == "__main__":
    url = "http://www.baidu.com"
    print(getHTMLText(url))

步骤3: 搜索关键词建议

下面,以爬取某图片为例

import requests

def get_image(url):  # 1 个用法
    try:
        r = requests.get(url, timeout=10)
        r.raise_for_status()
        return r.content
    except Exception as err:
        print(err)

def save_image(path, content):  # 1 个用法
    with open(path, "wb") as f:
        f.write(content)

if __name__ == "__main__":
    url_list = ["flex-video-list_flexTilesItem__bhNS9"]
    for url in url_list:
        imag_content = get_image(url)
        if imag_content:  # 确保内容不为空
            dir = "e:/"
            file_name = url.split("/")[-1:][0]
            path = dir + file_name
            save_image(path, imag_content)

在数据库中搜索时,使用以下中文关键词组合,以提高命中率:

  • 核心关键词:Python 图片爬取Python 图像下载网络爬虫 图像
  • 扩展关键词:
    • Python 爬虫 图片采集
    • 反爬虫 图片下载
    • Scrapy 图像抓取
    • BeautifulSoup 图片解析
  • 高级技巧:
    • 使用布尔运算符,例如:Python AND (图片爬取 OR 图像下载)
    • 限定时间范围(如近5年),以获取最新研究。

步骤4: 示例文献和搜索提示

基于常见研究主题,以下是一些可能存在的文献类型(实际搜索结果需您自行验证):

  • 期刊论文示例
    • 标题可能类似《基于Python的网络图片爬取系统设计与实现》或《反爬虫机制下的图像数据采集优化研究》。
    • 作者常来自计算机学院,如清华大学、北京大学等机构。
  • 书籍示例
    • 《Python网络爬虫实战》(作者:李辉)可能有章节专门讨论图片下载。
    • 《Scrapy框架开发指南》(作者:刘硕)通常包含图像爬取案例。
  • 搜索提示
    • 在CNKI中,进入“高级搜索”,输入关键词后,筛选“信息科技”或“自动化技术”类别。
    • 检查文献的引用次数,高引文献往往更可靠(例如,引用数 > 50)。
    • 下载PDF后,用Python相关术语(如requests.get())快速扫描内容。

步骤5: 额外资源建议

  • 开源项目参考:GitHub(github.com)上有许多中文Python图片爬虫项目(如搜索“Python 图片爬虫”),代码库常附带文档或论文链接。
  • 学术论坛:访问知乎(www.zhihu.com)或CSDN(www.csdn.net),搜索相关话题,用户常分享文献综述。
  • 注意事项
    • 确保爬取行为合法,遵守网站robots.txt和版权法。
    • 文献质量参差,优先选择核心期刊(如《计算机应用》或《软件学报》)。

通过以上步骤,您应能高效找到相关中文文献。如果您有具体需求(如某个应用场景),我可以进一步细化建议!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值