- 博客(2130)
- 收藏
- 关注
原创 什么是 Agentic RAG,一文读懂 Agentic RAG 数据检索范式
2024年,AI代理工作流程将推动大型语言模型(LLM)应用的进一步发展,特别是在检索增强生成(RAG)领域。Agentic RAG通过将AI代理整合到RAG管道中,克服了传统RAG的局限性,如单一知识源和一次性检索问题。AI代理具备记忆、规划和工具使用能力,能够动态决定检索策略、评估上下文质量,并执行多步骤任务。ReAct框架是AI代理的核心,通过“思考-行动-观察”循环完成任务。Agentic RAG的引入为构建更强大、更通用的LLM应用提供了新的可能性。
2025-05-10 21:50:00
455
原创 别再傻傻分不清!一文讲透大模型里的 RAG、Agent、微调和提示词工程
本文介绍了人工智能大模型中的四个关键技术:RAG、Agent、微调和提示词工程。RAG通过外挂知识库增强大模型的信息检索能力,使其能够提供更全面、准确的回答。Agent则赋予大模型自主规划和执行任务的能力,使其成为智能助手。微调通过特定领域的数据训练,使大模型在专业领域表现更佳。提示词工程则优化与大模型的沟通,确保其理解并执行用户指令。这四项技术协同工作,提升了大模型的应用效果和智能化水平。
2025-05-10 17:59:25
779
原创 落地RAG系列:RAG入门及RAG面临的挑战和解决方案!!
2023年,RAG(检索增强生成)成为大模型人工智能系统中的主流架构,其性能、检索效率和准确性成为研究重点。RAG通过整合外部知识源,提升大语言模型(LLMs)的生成准确性和可信度,尤其适用于知识密集型任务。RAG的核心优势在于解决LLMs的幻觉问题、知识缺乏问题、数据安全问题和可信度问题。与微调大模型相比,RAG更适合数据频繁变动、需要出处、对幻觉敏感以及节省GPU成本的场景。RAG分为索引和检索两个阶段:索引阶段将内容解析、分割并向量化存储;检索阶段将用户提问向量化,从向量数据库中检索相似信息并作为上下
2025-05-10 14:50:46
460
原创 一文教你如何搭建基于大模型的智能知识库,看到就是赚到!!
自从2022年底ChatGPT横空出世引爆了大模型技术浪潮,时至今日已经一年有余,如何从技术侧向商业侧落地转化是一直以来业内普遍关注的问题。前排提示,文末有大模型AGI-CSDN独家资料包哦!从目前企业端观察到的情况来看,基于大模型的知识库是一个比较有潜力和价值的应用场景,能够帮助企业大幅提高知识的整合和应用效率。然而由于通用预训练大模型的训练数据主要来源于公开渠道,缺乏企业专业和私有知识,直接使用将难以支撑企业内部的专业知识问答。
2025-05-08 15:18:06
746
原创 RAG 实践指南:使用Ollama与RagFlow构建本地知识库
上一篇文章我们介绍了如何利用 Ollama+AnythingLLM 来实践 RAG ,在本地部署一个知识库。借助大模型和 RAG 技术让我可以与本地私有的知识库文件实现自然语言的交互。前排提示,文末有大模型AGI-CSDN独家资料包哦!本文我们介绍另一种实现方式:利用 Ollama+RagFlow 来实现,其中 Ollama 中使用的模型仍然是Qwen2我们再来回顾一下 RAG 常见的应用架构。
2025-05-08 14:36:15
769
原创 基于知识图谱增强RAG应用和构建RAG知识库(附教程)
本文是AI落地实践的优秀案例,利用RAG技术(Retrieval-Augmented Generation,检索增强生成)的知识库实践为背景,介绍了RAG技术的发展及存在的不足,以及知识图谱相关的知识,利用RAG技术去完善和智能化知识图谱。在AI技术大量涌现,但应用不足的情况下,指明了现有应用场景、技术与AI结合的具体做法。
2025-05-08 14:18:33
732
原创 RAG与知识库搭建,手把手教你构建RAG系统
自从发现可以利用自有数据来增强大语言模型(LLM)的能力以来,如何将 LLM 的通用知识与个人数据有效结合一直是热门话题。关于使用微调(fine-tuning)还是检索增强生成(RAG)来实现这一目标的讨论持续不断。检索增强生成 (RAG) 是一种使用来自私有或专有数据源的信息来辅助文本生成的技术。它将检索模型(设计用于搜索大型数据集或知识库)和生成模型(例如大型语言模型 (LLM),此类模型会使用检索到的信息生成可供阅读的文本回复)结合在一起。前排提示,文末有大模型AGI-CSDN独家资料包哦!
2025-05-08 13:52:23
1295
原创 构建企业专属大模型知识库,解决企业知识管理与应用难点
大部分企业的知识管理有三个不足:缺乏长期规划、缺乏组织机制和文化、缺乏智能化,大模型+知识库的体系建设,从知识管理的底层切入,帮助企业探索多场景的知识应用形态,提升企业知识应用价值。本文从[知识库](建设的挑战、AI+知识库建设框架与路径、4个不同场景的知识库落地案例,三个部分详细展开。企业目前在建设知识库过程中会遇到非常多困难,主要总结有以下三个部分。企业无论有无构建知识库,大都采取纸质化办公方式,很多的数字甚至还处于非电子化版本,企业需要去做更多的工作完成这个电子的转换。
2025-05-07 15:48:23
960
原创 AI知识库和Agent简介及实现
前排提示,文末有大模型AGI-CSDN独家资料包哦!随着人工智能的发展,大规模预训练模型(Large Pre-trained Models,简称大模型)成为了AI领域的重要研究方向。大模型通过大量的数据训练,能够在各种任务中展现出强大的性能。本文将重点介绍AI知识库和智能代理(Agent)的概念及其实现方式,特别是在企业环境中的应用和实现。AI知识库(Knowledge Base)是一个系统化的信息存储结构,旨在支持知识管理和推理。信息存储。
2025-05-07 14:40:33
800
原创 一步步教你如何构建属于自己的个性化人工智能知识库
如何搭建个人AI知识库?前排提示,文末有大模型AGI-CSDN独家资料包哦!分享一下我的整体思路。我觉得方法都是次要的,因为每个人的需求、情况都不同——唯有思路可以借鉴。出发点和对应解法:第一,信息过载,无法逐一细细消化。所以需要AI辅助,通过总结、提炼等方式帮助我们先快速、大致掌握。第二,人脑不适合用来记东西,而应该用来做创造性的工作。所以需要“第二大脑 / Second Brain”来存储,需要AI根据语义进行检索(所有工具都有关键词检索,再加上语义检索就齐全了)。第三,记笔记是对信息做预处理。记笔记的
2025-05-07 14:38:59
1146
原创 手把手教你从零搭建自己的知识库
Word2Vec是一种用于处理自然语言处理的模型,它是在2013年由Google的研究员Mikolov等人首次提出的。Word2Vec通过训练海量的文本数据,能够将每个单词转换为一个具有一定维度的向量。这个向量就可以代表这个单词的语义。因为这个向量是在大量语境中学到的,所以这个向量能很好的表达这个单词的语义。Word2Vec包括Skip-Gram和CBOW两种模型,主要是通过优化模型计算词与词之间的关系,从而获得词的向量表示。Skip-Gram模型是通过一个词预测其上下文。
2025-05-06 16:49:46
845
原创 一文详解几种常见本地大模型个人知识库工具部署、微调及对比选型
这几年,各种新技术、新产品层出不穷,其中,大模型(Large Language Models)作为AI领域的颠覆性创新,凭借其在语言生成、理解及多任务适应上的卓越表现,迅速点燃了科技界的热情。从阿尔法狗的胜利到GPT系列的横空出世,大模型不仅展现了人工智能前所未有的创造力与洞察力,也预示着智能化转型的新纪元。然而,大模型的潜力要真正转化为生产力,实现从实验室到现实世界的平稳着陆,还需跨越理论到实践的鸿沟。前排提示,文末有大模型AGI-CSDN独家资料包哦!
2025-05-06 16:32:44
842
原创 如何通过AI搭建自己的知识库(智能体)?零基础入门到精通,看这篇就够了!
"扣子"是由字节跳动公司于2024年2月1日推出的一款集成AI智能体开发平台。它开创了国内AI聊天机器人快速开发的先河。▲扣子首页下面是扣子平台创建Bot的页面,对于初次使用的伙伴来说功能确实很多,但不知道从何下手搭建智能体。▲扣子智能体搭建页面。
2025-05-06 15:23:07
688
原创 我们为什么要用本地大模型?本地大模型入门指南!
大模型,在2023年主要称之为大型语言模型(Large Language Models),是一种基于人工智能和机器学习技术构建的先进模型,旨在理解和生成自然语言文本。这些模型通过分析和学习海量的文本数据,掌握语言的结构、语法、语义和上下文等复杂特性,从而能够执行各种语言相关的任务。LLM的能力包括但不限于文本生成、问答、文本摘要、翻译、情感分析等。我们最熟悉的大模型,莫过于CHATGPT。但我们最常用的大模型,未必是CHATGPT。
2025-04-30 20:08:45
788
原创 轻松搭建:本地大模型与知识库的简便方法
每款大模型都有不同版本,根据自己的机器来选择,根据官网的文档也说明了,一般7B的模型至少需要8G的内存,13B的模型至少需要16G内存,70B的模型至少需要64G内存。包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;不管你是在PC上跑大模型,在Mac上跑大模型,还有在树莓派上跑大模型,
2025-04-28 17:04:52
573
原创 聊一聊国内大模型公司,大模型面试心得、经验、感受
这段时间面试了很多家,也学到了超级多东西。楼主这边背景是做基座预训练算法端为主的,对框架端和RL的内容有一定了解(面试能凑合),对于后端的知识比如ML compiler,kernel,cuda相关的了解就比较浅了(问到觉大概率挂)。硬件几乎不太懂。感觉一圈聊下来几点感悟:大模型这方向真的卷,面试时好多新模型,新paper疯狂出,东西出的比我读的快。Research岗位对工程也有要求,工程端也需要了解模型。感觉比较硬核的岗位,尤其初创公司都是对好几个点都有要求的(应用,模型,框架,底层后端,硬件)。
2025-04-28 16:50:44
980
原创 大模型面试题:每道都是硬核挑战,没有送分题!
如果你是零基础小白,想快速入门大模型是可以考虑的。一方面是学习时间相对较短,学习内容更全面更集中。二方面是可以根据这些资料规划好学习计划和方向。包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!😝有需要的小伙伴,可以保存图片到。
2025-04-28 16:30:02
930
原创 2025年超全大模型常见面试题(附答案),超详细!!
注意力机制是一种模拟人类注意力分配过程的模型,它能够在处理大量信息时,选择性地关注对任务更重要的信息,忽略无关信息。在自然语言处理中,注意力机制常用于机器翻译、文本摘要、问答系统等任务中,帮助模型捕捉输入序列中的关键信息。在计算机视觉中,注意力机制也用于图像识别、目标检测等任务,使模型能够关注图像中的关键区域。
2025-04-28 15:58:02
965
原创 一个开源的企业私有化大模型服务平台,一键部署异构GPU集群,开箱即用,还能免费商用!
在过去近两年中,AI发展速度超过任何历史时期,基于大模型的各类应用已经渗透到了各行各业中,很多企业都在积极探索如何利用大模型提高公司运营管理的能效。阿里云 CTO 周靖人也说过““当下企业应用大模型存在三种范式:一是对大模型开箱即用,二是对大模型进行微调和持续训练,三是基于模型开发应用,其中最典型的需求是RAG但是如果以企业私有化角度来说,部署大模型或者RAG等系统,就大模型开箱即用这点还远远没有达到,尤其在多异构GPU调度管理的情况下。
2025-04-28 15:41:17
954
原创 本地私有化部署开源大模型完整教程:LangChain + Streamlit+ Llama
通过LangChain和Streamlit我们可以方便的整合任何的LLM模型,并且通过GGML我们可以将大模型运行在消费级的硬件中,这对我们个人研究来说使非常有帮助的。读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用如果你是零基础小白,想快速入门大模型是可以考虑的。一方面是学习时间相对较短,学习内容更全面更集中。二方面是可以根据这些资料规划好学习计划和方向。包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。
2025-04-27 14:47:39
816
原创 AI教育辅助:教学设计、教案生成、教研活动设计、课件PPT、备课助手等六大应用场景演示
随着人工智能(AI)技术的快速发展,AI在教育领域的应用日益广泛。AI教育辅助工具在教学设计、教案生成、教研活动设计、备课助手、课件PPT制作、智能互动课堂等方面发挥着重要作用。本文将深入探讨这六大应用场景,并演示AI教育辅助工具的实际应用。AI教育辅助工具可以根据学生的学习需求、兴趣爱好和能力水平,为教师提供个性化的教学设计建议。通过分析学生的学习数据,AI可以为教师推荐合适的教学内容、教学方法和评价方式,从而提高教学效果。AI教育辅助工具可以根据教师的教学目标和课程内容,自动生成教案。
2025-04-27 14:27:35
1113
原创 大模型教程:免费离线AI大模型,断网也能用!!!
大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。这个知道,那后面的名字是哪里来的呢?
2025-04-27 14:10:39
781
原创 小白也可以部署私有化大模型知识库
Ollama 是一个强大的开源工具,专为构建和部署大型语言模型(LLM)设计。它提供了一个直观的命令行界面和服务器支持,使用户能够轻松下载、运行和管理各种流行的开源LLM。与需要复杂配置和强大硬件的传统 LLM 不同,Ollama 让使用大模型变得像操作手机App一样简单便捷。Ollama 支持多种大语言模型,如Qwen2、Llama3、Phi3、Gemma2等,它不仅简化了在本地环境中的运行和测试过程,还降低了技术门槛,让开发者、研究人员和技术爱好者可以快速部署和实验最新的模型技术。Ollama官网。
2025-04-27 13:47:23
539
原创 2025年大语言模型(LLM)微调方法最全总结!
众所周知,大语言模型(LLM)正在飞速发展,各行业都有了自己的大模型。其中,大模型微调技术在此过程中起到了非常关键的作用,它提升了模型的生成效率和适应性,使其能够在多样化的应用场景中发挥更大的价值。那么,今天这篇文章就带大家深入了解大模型微调,主要包括什么是大模型微调、什么时候需要大模型微调、大模型微调方法总结、大模型微调最佳实践等。
2025-04-26 09:30:00
1616
原创 大模型应用:探索AI大模型的50个应用场景:让科技改变生活
随着人工智能技术的迅猛发展,AI大模型在各个领域的应用日益广泛。百度创始人、董事长兼首席执行官李彦宏在2024年世界人工智能大会上表示,目前AI技术发展路线发生了方向性改变,已从过去辨别式人工智能转向了未来生成式人工智能。本文将为大家盘点AI大模型的50个应用场景,并按,带您了解AI如何深刻改变我们的工作与生活。AI大模型在自然语言处理方面表现出色,广泛应用于对话系统、自动翻译、语音识别、文本生成和语义分析等领域。NLP技术已成为现代人工智能的重要组成部分,帮助企业和个人提升沟通效率和信息处理能力。
2025-04-26 09:00:00
1270
原创 大模型的应用主要集中在哪些领域?
是一门研究人类语言与计算机之间交互的领域,旨在使计算机能够理解、解析、生成和处理自然语言。NLP结合了计算机科学、人工智能、语言学和认知科学等多个学科的知识,旨在构建能够理解和处理人类语言的智能系统。:这是NLP的核心任务之一,旨在使计算机能够理解人类语言的含义。语言理解的任务包括词法分析、句法分析、语义分析和语篇分析等。词法分析涉及将句子分解为单词或词组,句法分析涉及确定单词之间的语法关系,语义分析涉及理解句子的意义,而语篇分析涉及理解句子在上下文中的含义。:信息抽取旨在从文本中提取出结构化的信息。
2025-04-25 16:00:30
988
原创 零基础零成本,手把手部署一个属于你的私有大模型, 训练自己私有大模型
看了那么多chatGPT的文章,作为一名不精通算法的开发,也对大模型心痒痒。但想要部署自己的大模型,且不说没有算法相关的经验了,光是大模型占用的算力资源,手头的个人电脑其实也很难独立部署。就算使用算法压缩后的大模型,部署在个人电脑上,还要忍受极端缓慢的计算速度以及与chatGPT相差甚远的模型效果。前排提示,文末有大模型AGI-CSDN独家资料包哦!有什么办法能够部署属于我们自己的大模型呢?有编程基础:作为一个合格的程序员,这应该是必备素质。
2025-04-25 15:33:46
1037
原创 我们为什么要用本地大模型?如何搭建私有化大模型?
大模型,在2023年主要称之为大型语言模型(Large Language Models),是一种基于人工智能和机器学习技术构建的先进模型,旨在理解和生成自然语言文本。这些模型通过分析和学习海量的文本数据,掌握语言的结构、语法、语义和上下文等复杂特性,从而能够执行各种语言相关的任务。LLM的能力包括但不限于文本生成、问答、文本摘要、翻译、情感分析等。我们最熟悉的大模型,莫过于CHATGPT。但我们最常用的大模型,未必是CHATGPT。
2025-04-25 15:15:28
961
原创 本地部署大模型与基于RAG构建私有知识库,一步到位!
以上就是本地大模型部署和基于RAG方案的私有知识库搭建的基本操作。除此之外,还有更多丰富有趣的功能等待探索。如今大模型遍布各行各业、各个领域,基于RAG方案的私有知识库技术也逐渐发展,成为提升个人工作效率与创造潜能的新风尚。本地部署模型意味着用户能在自己的设备上享受即时响应的智能辅助,无需依赖云端,既保护了个人数据隐私,又确保了操作的低延迟与高可靠性。结合RAG方案的私有知识库,则让每位用户能够构建专属自己的知识宇宙。
2025-04-25 14:52:36
681
原创 大模型RAG入门到实战基础教程(非常详细),保姆级教程!
大模型(Large Language Model,LLM)的浪潮已经席卷了几乎各行业,但当涉及到专业场景或行业细分域时,通用大模型就会面临专业知识不足的问题。相对于成本昂贵的“Post Train”或“SFT”,基于RAG的技术方案往成为一种更优选择。本文从RAG架构入手,详细介绍相关技术细节,并附上一份实践案例。前排提示,文末有大模型AGI-CSDN独家资料包哦!本文列举了LLM的问题。简单介绍了什么是 RAG ,以及 RAG 的流程。最后使用了一个简单的LangChain代码示例来展示 RAG 的使用。
2025-04-25 14:05:34
1223
原创 一文读懂:大模型RAG(检索增强生成)
本文概述 RAG 的核心算法,并举例说明其中的一些方法。RAG融合是一个强大的功能,能够提高RAG应用的语义搜索效率。通过使用语言模型生成多个查询并对搜索结果进行重新排序,RAG融合可以呈现更丰富多样的内容,并提供了一个额外的层次,用于调整应用。此外,RAG融合还可以实现自动纠正、节省成本以及增加内容多样性。但是,需要注意一些权衡,比如潜在的延迟问题、自动纠正的挑战以及成本影响。对于依赖常见概念但可能出现内部行话或重叠词汇的应用来说,RAG融合尤其有用。
2025-04-24 16:07:58
879
原创 2025年大模型面经大全:收藏这一篇就够了!
通过上述的面试经验分享,希望能够帮助大家更好地准备大模型领域的面试。记住,成功的面试不仅仅是技术能力的展示,更是个人态度和沟通能力的体现。希望每位求职者都能顺利通过面试,找到满意的工作!通过以上面试经验分享,相信您已经对大模型岗位的面试有了较为全面的认识。接下来,您可以根据自己实际情况制定相应的复习计划,并积极准备即将到来的面试。祝您面试顺利!读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用如果你是零基础小白,想快速入门大模型是可以考虑的。
2025-04-24 15:11:21
676
原创 大模型面试必备!超全面经指南+答案,轻松应对面试!
大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。从大模型系统设计入手,讲解大模型的主要方法;
2025-04-24 15:09:59
607
原创 大模型面试必刷题库:100道高频题+答案(2025最新版)
注意力机制是一种模拟人类注意力分配过程的模型,它能够在处理大量信息时,选择性地关注对任务更重要的信息,忽略无关信息。在自然语言处理中,注意力机制常用于机器翻译、文本摘要、问答系统等任务中,帮助模型捕捉输入序列中的关键信息。在计算机视觉中,注意力机制也用于图像识别、目标检测等任务,使模型能够关注图像中的关键区域。
2025-04-24 15:08:48
737
原创 如何搭建基于大模型的智能知识库
基于RAG与LLM的知识库作为目前最有潜力的企业端大模型应用之一,从技术角度可以看到,建设方案已经完备;从业务角度,最终的应用效果和业务价值还需要观察,并通过业务侧的反馈不断地促进建设方案的进一步优化,比如增加对多模态知识的处理能力等。让我们共同期待这类应用普及那一天的到来。读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用如果你是零基础小白,想快速入门大模型是可以考虑的。一方面是学习时间相对较短,学习内容更全面更集中。二方面是可以根据这些资料规划好学习计划和方向。
2025-04-18 15:37:53
633
原创 一步步教你如何构建属于自己的个性化人工智能知识库
分享一下我的整体思路。我觉得方法都是次要的,因为每个人的需求、情况都不同——唯有思路可以借鉴。出发点和对应解法:第一,信息过载,无法逐一细细消化。所以需要AI辅助,通过总结、提炼等方式帮助我们先快速、大致掌握。第二,人脑不适合用来记东西,而应该用来做创造性的工作。所以需要“第二大脑 / Second Brain”来存储,需要AI根据语义进行检索(所有工具都有关键词检索,再加上语义检索就齐全了)。第三,记笔记是对信息做预处理。记笔记的目的,是增援未来的自己。
2025-04-18 15:36:14
745
原创 RAG 知识库搭建:Ollama+AnythingLLM 搭建本地知识库
RAG,即检索增强生成(Retrieval-Augmented Generation),是一种先进的自然语言处理技术架构,它旨在克服传统大型语言模型(LLMs)在处理开放域问题时的信息容量限制和时效性不足。RAG的核心机制融合了信息检索系统的精确性和语言模型的强大生成能力,为基于自然语言的任务提供了更为灵活和精准的解决方案。前排提示,文末有大模型AGI-CSDN独家资料包哦!
2025-04-18 15:34:11
1044
原创 只需六步,从0到1教你搭建个人AI知识库
在这个信息爆炸的时代,拥有一个个人AI知识库对于整理、学习和应用知识至关重要。本文将引导你通过五个步骤,从零基础开始搭建起一个高效的个人AI知识库。
2025-04-18 15:32:02
995
原创 RAG知识库搭建:手把手教你从零搭建自己的知识库
Word2Vec是一种用于处理自然语言处理的模型,它是在2013年由Google的研究员Mikolov等人首次提出的。Word2Vec通过训练海量的文本数据,能够将每个单词转换为一个具有一定维度的向量。这个向量就可以代表这个单词的语义。因为这个向量是在大量语境中学到的,所以这个向量能很好的表达这个单词的语义。Word2Vec包括Skip-Gram和CBOW两种模型,主要是通过优化模型计算词与词之间的关系,从而获得词的向量表示。Skip-Gram模型是通过一个词预测其上下文。
2025-04-18 15:29:41
846
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人