我们展示一下实际系统中的 Cache 。
如上图所示,整个系统的存储架构包括了 CPU 的寄存器,L1/L2/L3 CACHE,DRAM 和硬盘。
数据访问时先找寄存器,寄存器里没有找 L1 Cache, L1 Cache 里没有找 L2 Cache 依次类推,最后找到硬盘中。
同时,我们可以看到,速度与存储容量的折衷关系。容量越小,访问速度越快!如果您正在学习Spring Cloud,推荐一个连载多年还在继续更新的免费教程:https://blog.didispace.com/spring-cloud-learning/
其中,一个概念需要搞清楚。
CPU 和 Cache 是 word 传输的,而 Cache 到主存是以块传输的,一块大约 64Byte 。
现有 SOC 中的 Cache 一般组成如下。
1.3 Cache 的分类
Cache按照不同标准分类可以分为若干类。
-
按照数据类型划分:I-Cache与D-Cache。其中I-Cache负责放置指令,D-Cache负责方式数据。两者最大的不同是D-Cache里的数据可以写回,I-Cache是只读的。
-
按照大小划分:分为small Cache和large Cache。没路组(后文组相连介绍)<4KB叫small Cache, 多用于L1 Cache, 大于4KB叫large Cache。多用于L2及其他Cache.
-
按照位置划分:Inner Cache和Outer Cache。一般独属于CPU微架构的叫Inner Cache, 例如上图的L1 L2 CACHE。不属于CPU微架构的叫outer Cache.
-
按照数据关系划分:Inclusive/exclusive Cache: 下级Cache包含上级的数据叫inclusive Cache。不包含叫exclusive Cache。举个例子,L3 Cache里有L2 Cache的数据,则L2 Cache叫exclusive Cache。
2、Cache的工作原理
要讲清楚 Cache 的工作原理,需要回答 4 个问题:
-
数据如何放置
-
数据如何查询
-
数据如何被替换
-
如果发生了写操作,Cache如何处理
2.1 数据如何放置
这个问题也好解决。我们举个简单的栗子来说明问题。
如果您正在学习Spring Cloud,推荐一个连载多年还在继续更新的免费教程:https://blog.didispace.com/spring-cloud-learning/
假设我们主存中有 32 个块,而我们的 Cache 一共有 8 个 Cache 行( 一个 Cache 行放一行数据)。
假设我们要把主存中的块 12 放到 Cache 里。
那么应该放到 Cache 里什么位置呢?
三种方法:
-
全相连(Fully associative)。可以放在Cache的任何位置。
-
直接映射(Direct mapped)。只允许放在Cache的某一行。比如12 mod 8
-
组相连(set associative)。可以放在Cache的某几行。例如2路组相连,一共有4组,所以可以放在0,1位置中的一个。
可以看到,全相连和直接映射是Cache组相连的两种极端情况。
不同的放置方式主要影响有两点:
1、组相连组数越大,比较电路就越大,但Cache利用率更高,Cache miss发生的概率小。2、组相连数目变小,Cache经常发生替换,但是比较电路比较小。
这也好理解,内存中的块在Cache中可放置的位置多,自然找起来就麻烦。
2.2 如何在Cache中找数据
其实找数据就是一个比对过程,如下图所示。
我们地址都以 Byte 为单位的。
但主存于Cache之间的数据交换单位都是块(block,现代Cache一般一个block大约64Byte)。所以地址对最后几位是block offset。
由于我们采用了组相连,则还有几个比特代表的是存储到了哪个组。
组内放着若干数据,我们需要比较Tag, 如果组内有Tag出现,则说明我们访问的数据在缓存中,可以开心的使用了。
比如举个 2 路组相连的例子,如下图所示。
T表示Tag。直接比较Tag,就能得知是不是命中了。如果命中了,则根据index(组号)将对应的块取出来即可。
如上图所示。用index选出位于组相连的哪个组。然后并行的比较Tag, 判断最后是不是在Cache中。上图是2路组相连,也就是说两组并行比较。如果您正在学习Spring Cloud,推荐一个连载多年还在继续更新的免费教程:https://blog.didispace.com/spring-cloud-learning/
那如果不在缓存中呢?这就涉及到另一个问题。
不在缓存中如何替换 Cache ?
2.3 如何替换Cache中的数据
Cache中的数据如何被替换的?这个就比较简单直接。
-
随机替换。如果发生Cache miss里随机替换掉一块。
-
Least recently used. LRU。最近使用的块最后替换。
-
First in, first out (FIFO), 先进先出。
实际上第一个不怎么使用,LRU 和 FIFO 根据实际情况选择即可。
Cache 在什么时候数据会被替换内?也有几种策略。
-
不在本 Cache 替换。如果Cache miss了,直接转发访问地址到主存,取到的数据不会写到Cache.
-
在读MISS时替换。如果读的时候Cache里没有该数据,则从主存读取该数据后写入Cache。
-
在写MISS时替换。如果写的时候Cache里没有该数据,则将本数据调入Cache再写。
2.4 如果发生了写操作怎么办
Cache毕竟是个临时缓存。
如果发生了写操作,会造成Cache和主存中的数据不一致。如何保证写数据操作正确呢?另外,如果您正在学习Spring Cloud,推荐一个连载多年还在继续更新的免费教程:https://blog.didispace.com/spring-cloud-learning/
也有三种策略。
- 通写:直接把数据写回Cache的同时写回主存。极其影响写速度。
- 回写:先把数据写回Cache, 然后当Cache的数据被替换时再写回主存。
- 通写队列:通写与回写的结合。先写回一个队列,然后慢慢往主存储写。如果多次写同一个数据,直接写这个队列。避免频繁写主存。
3、Cache一致性
Cache 一致性是 Cache 中遇到的比较坑的一个问题。
什么原因需要 Cache 处理一致性呢?
主要是多核系统中,假如core 0读了主存储的数据,写了数据。core 1也读了主从的数据。这个时候core 1并不知道数据已经被改动了,也就是说,core 1 Cache中的数据过时了,会产生错误。
Cache一致性的保证就是让多核访问不出错。
Cache一致性主要有两种策略。
先自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数初中级Java工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则近万的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《Java开发全套学习资料》送给大家,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频
如果你觉得这些内容对你有帮助,可以扫码领取!
Docker步步实践
目录文档:
①Docker简介
②基本概念
③安装Docker
④使用镜像:
⑤操作容器:
⑥访问仓库:
⑦数据管理:
⑧使用网络:
⑨高级网络配置:
⑩安全:
⑪底层实现:
⑫其他项目:
中…(img-NsavQUSy-1711361352595)]
⑦数据管理:
[外链图片转存中…(img-Uv1dntIa-1711361352595)]
⑧使用网络:
[外链图片转存中…(img-n76M0RyD-1711361352596)]
⑨高级网络配置:
[外链图片转存中…(img-iwf2S5fa-1711361352596)]
⑩安全:
[外链图片转存中…(img-IKA0rAZd-1711361352596)]
⑪底层实现:
[外链图片转存中…(img-WEZYC3nY-1711361352597)]
⑫其他项目:
[外链图片转存中…(img-tkhCrcSm-1711361352597)]
需要更多Java资料的小伙伴可以帮忙点赞+关注,点击传送门,即可免费领取!