Python使用线性回归实现对股票的预测

本文介绍了使用Python的线性回归模型对股票价格进行预测的方法。首先定义预测列标签和天数,然后处理数据,创建新特征,填充缺失值。接着,通过训练集和测试集进行模型训练,评估准确性,并进行预测。最后,展示预测结果并绘制图表。
摘要由CSDN通过智能技术生成

输出

在这里插入图片描述

二、数据处理

定义预测列标签名 存放研究对象的标签名

forecast_col = ‘Adj. Close’;

定义预测天数 这里取所有数据量长度的百分之1

forecats_count = math.ceil(len(df)*0.01)

z只用到以下字段

df = df[[‘Adj. Open’,‘Adj. High’,‘Adj. Low’,‘Adj. Close’,‘Adj. Volume’]];

print(df);

构造两个新的列 HL_PCT为股票最高价与最低价变化百分比 PCT_Change为股票收盘价与开盘价的变化百分比

df[‘HL_PCT’] = (df[‘Adj. High’]-df[‘Adj. Low’])/df[‘Adj. Close’]*100;

df[‘PCT_Change’] = (df[‘Adj. Close’]-df[‘Adj. Open’])/df[‘Adj. Open’]*100;

真正用到的特征字段如下

df = df[[‘Adj. Close’,‘HL_PCT’,‘PCT_Change’,‘Adj. Volume’]];

print(df.head());

sklearn并不会处理空值 这里将空值全部填充为比较难出现的值 这里填-99999 增加inplace=True 填充的作用将改

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值