- 博客(3)
- 收藏
- 关注
原创 在深度学习中计算自定义数据集的均值和标准差
一、前言:对于常用的图像分类模型,如 VGG、ResNet 等,这些值通常是根据 ImageNet 数据集统计得出的。ImageNet 数据集包含了大量的自然图像,通过对这些图像进行统计分析,得到了如下均值和标准差:mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)。但是对于自己的数据集,想知道其均值和标准差,又该如何计算呢?二、下面使用Pytorch框架来实现计算自己的数据集的均值和标准差。4.使用for循环遍历数据集,计算均值标准差,并返回。
2024-08-27 11:06:36 475
原创 语义分割数据集和标签同时增强并最后进行重命名
label_folder = r'数据增强后的标签位置'(记得先将标签转回png格式)一、先进行数据增强(在增强前确保图像和标签均为png格式),代码如下。二、进行同时编号,由于生成的标签和原图略有不同,需要进行处理。
2024-08-21 21:12:51 416
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人