自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(14)
  • 收藏
  • 关注

原创 Python数据可视化:Matplotlib入门指南

本文介绍了使用Python的Matplotlib库进行数据可视化的基础方法,包括折线图、条形图和饼图三种常见图表类型的绘制。首先讲解了Matplotlib的基本设置,如导入库、设置中文字体和画布大小。然后详细展示了三种图表的绘制代码和参数设置:折线图(plot)可设置线条样式、标记点和数据标签;条形图(bar/barh)支持垂直和水平展示;饼图(pie)可实现标准饼图、圆环图和爆炸式饼图效果。每种图表都包含标题、坐标轴标签、图例、网格线等元素的设置方法,并附有完整代码示例和效果图。

2025-12-20 19:00:08 346

原创 Pandas数据分析实战指南

本文介绍了pandas库在数据处理中的主要应用方法。内容包括:1) 数据收集:使用read_csv读取CSV文件和read_json读取JSON文件的方法;2) 数据清洗:缺失值处理(isna、dropna、fillna等方法)和重复数据处理(duplicated、drop_duplicates);3) 数据分析:数据类型转换(astype)、数据变形(T、melt、pivot)和数据分箱(cut、qcut)。文章通过具体代码示例展示了pandas在数据导入导出、清洗和分析中的实用技巧,帮助用户高效处理结构

2025-12-19 22:48:15 949

原创 Pandas数据分析核心指南

Pandas是Python中用于数据处理和分析的核心库,提供高效的数据结构和操作工具。主要特点包括:标签化数据结构、缺失值处理、数据对齐、多样化数据源支持以及时间序列处理。核心数据结构分为Series(一维)和DataFrame(二维),支持索引修改、数据访问、统计计算等操作。Series可通过列表或字典创建,具有多种属性和方法(如value_counts、drop_duplicates等);DataFrame支持行列操作和转置,常用于表格数据处理。Pandas广泛应用于数据清洗、统计分析等场景,是数据科学

2025-12-17 21:39:24 907

原创 Numpy科学计算:高效数据处理利器

numpy是Python中科学计算的基础包。它是一个Python库,提供多维数组对象、各种派生对象(例如掩码数组和矩阵)以及用于对数组进行快速操作的各种方法,包括数学、逻辑、形状操作、排序、选择、I/O、离散傅里叶变换、基本线性代数、基本统计运算、随机模拟等等。

2025-12-14 19:31:11 945

原创 Python推导式与闭包全解析

本文介绍了Python编程中的几个重要概念:推导式、内置函数、拷贝机制、作用域和闭包。推导式部分讲解了列表、字典和集合推导式的语法和使用方法。内置函数部分分类介绍了输入输出、类型转换、数学运算、数据容器操作等常用函数。拷贝机制部分对比了浅拷贝和深拷贝的区别。作用域部分详细说明了四种作用域(局部、外层、全局、内建)及其查找顺序。最后,闭包部分解释了闭包的定义、产生条件和实现原理,并通过实例展示了闭包如何保存外层变量状态。这些知识点对提高Python编程效率和理解代码运行机制具有重要意义。

2025-12-12 18:05:51 630

原创 Python高阶函数解析

本文介绍了Python函数的核心特性及应用场景。主要内容包括:1)函数作为对象的特性(可添加属性、赋值变量、作为参数和返回值);2)参数打包解包机制(*args和**kwargs的使用);3)高阶函数的概念与优势;4)条件表达式的简洁语法;5)匿名函数lambda的用法限制;6)数据处理函数map和filter的使用方法及注意事项。通过代码示例展示了Python函数的灵活性,包括可变参数处理、多返回值、函数式编程等特性,为开发者提供了高效处理数据的实用技巧。

2025-12-11 21:42:51 1368

原创 Python继承全攻略:从入门到精通

本文介绍了面向对象编程中的继承机制及其相关概念。主要内容包括:继承的定义与语法,方法调用顺序(实例>子类>父类>object类);属性增加的两种方式(super()和类名.init);多重继承的定义与实现方法;方法重写的作用;常用方法isinstance()和issubclass();三类访问权限(公开、受保护、私有);getter和setter方法的使用;常见的魔法方法如__str__、__len__等;以及object类作为所有类的顶层父类的作用。文章通过代码示例和图示详细说明了各概念

2025-12-01 03:16:28 1260

原创 0基础入门Python面向对象编程:从类到实例的全面解析

本文摘要:面向对象编程以对象为核心,通过类定义对象的属性和行为。类作为模板,实例是具体对象。内容包括:类的定义(__init__方法)、实例创建与属性操作、自定义实例方法、实例属性与类属性区别、实例方法与类方法(@classmethod)应用、静态方法(@staticmethod)特点。强调类属性共享而实例属性独立,类方法操作类级别信息,静态方法作为工具方法。指出实例可调用类方法和静态方法但不推荐,保持代码清晰性。

2025-11-30 01:47:26 772

原创 0基础入门Python数据容器全解析:字符串到字典

本文系统介绍了Python中五种主要数据容器的特性与操作方法:1.字符串(不可变字符序列)包含index、split等方法;2.序列(列表/元组/字符串)支持切片、相加等操作;3.集合(无序不重复)提供并集、差集等数学运算;4.字典(键值对结构)支持增删改查操作;5.通用操作如类型转换和成员检测。文章详细对比了各容器在有序性、可变性和元素重复性方面的差异,并说明了不同容器的适用场景和遍历方式,为Python数据结构的使用提供了全面指导。

2025-11-29 00:21:44 1332 2

原创 0基础入门Python列表与元组:数据容器的终极指南

本文摘要: Python数据容器之列表与元组详解。列表(list)是可变有序容器,支持增删改查、排序等操作,可存储不同类型元素;元组(tuple)是不可变有序容器,元素不可修改但可查询。文章详细介绍了两种容器的定义方式、索引访问、常用方法(append/pop/index等)以及内置函数(len/max/sum等)的使用,并比较了二者的异同点。特别说明了元组虽不可变,但若包含可变元素(如列表)时内部可变元素的修改问题,以及解包操作等高级用法。

2025-11-28 00:03:50 1221

原创 0基础入门Python流程控制与函数全解析

本文介绍了Python编程中的流程控制语句和函数相关知识。在流程控制部分,重点讲解了continue和break语句的区别:continue跳过当前循环剩余语句进入下一次循环,而break会直接终止整个循环。在函数部分,详细说明了函数的定义、分类(内置/模块/自定义)、参数使用(位置/关键字参数)、参数默认值、可变参数、返回值等概念。此外还介绍了作用域规则(全局/局部变量)、函数嵌套调用以及递归调用的原理。全文通过具体代码示例,系统性地讲解了Python中流程控制和函数编程的核心知识点。

2025-11-26 23:48:38 1018

原创 0基础入门Python运算符与循环语句全解析

运算符 说明 示例+ 加号 1+1 =2 ** 指数 2**3 =8- 减号 1-1 =0 // 取整 5//2 = 2* 乘号 1*2 =2 % 取模 5%2 =1/ 除号 2/2 =1。

2025-11-26 00:25:46 971

原创 0基础入门python:变量、常量与数据类型

本文介绍了编程基础概念:1.变量与常量的区别,常量建议全大写命名;2.标识符命名规则,包括字符限制、大小写敏感等注意事项;3.基本数据类型(字符串、整型、浮点型)及其特性,整型无固定上限;4.字符串操作,包括格式化输出的三种占位符(%s、%f、%d)精度控制方法;5.常用转义字符及其功能,如换行符\n、制表符\t等。文章着重讲解了编程中的基础语法规则和数据处理方法。

2025-11-24 23:57:53 529

原创 2025pycharm安装

摘要: 学习智能体开发需选择Python集成开发环境,推荐PyCharm或Anaconda+VSCode。PyCharm专业版功能全面,适合复杂项目,但资源占用高;Anaconda环境隔离好,适合科学计算,但体积较大。安装时需注意系统版本,建议更改安装路径并勾选环境变量。Python解释器建议选择官网稳定版本,安装时务必加入系统环境变量。PyCharm汉化包可自动下载,重启生效。两种方案各有优劣,PyCharm更适合智能体开发。(149字)

2025-11-23 21:53:12 1433

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除