自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(11)
  • 收藏
  • 关注

原创 可分离滤波-高斯滤波

由于二维高斯核可以严格分解为两个相互独立的一维高斯核(横向 × 纵向),可大大降低计算量,对于大小为M×n的图像和大小为m×n的核,实现卷积操作需要MNmn次乘法核加分运算(计算公式如下3.35),但是如果滤波核是可分离的,对于w1(行)卷积核,第一次卷积只需要MNm次乘法和加分运算,因为w1卷积核的大小为m×1,对于w2(列)卷积核,第二次卷积只需要MNn次乘法和加分运算,所以共需要MN(m+n)次乘法和加分运算,因此可分离的核执行卷积运算可以大大减少计算量,滤波核越大越明显(可见如下公式3.44)。

2025-12-16 22:55:55 385

原创 低光图像增强-MSRCP

在前文我们已经详细说明了SSR单尺度低光图像增强算法了,作为一种传统的低光图像增强算法,SSR只能作为理论学习的算法,帮助我们了解视网膜算法,学习颜色恒常性理论知识,SSR是不足以算真正的图像增强算法的,MSR和MSRCP才是实际应用中真正使用到的低光图像增强算法,也就是我们常说的Retinex算法,但其实只要前面学习过SSR的,这一块就比较简单了,MSR多尺度低光图像增强算法,顾名思义就是多个 SSR 的加权和,SSR只有一个,如果选的比较大,虽然能够增强局部对比度,但也会导致噪声增大,边缘锐化。

2025-12-16 20:42:40 791 1

原创 图像增强-单尺度Retinex算法

在前面我们讲述了最基本的图像增强方法-直方图均衡化,今天我们来讲解一下新的图像增强的方法,Retinex算法,这一篇为简单的单尺度的Retinex算法,首先Retinex算法认为一副图像是由反射光与照射光强度构成的,其中发射光代表了图像的纹理、材质等主要的,而照射光强度则认为是像素所能到达的动态范围。

2025-12-08 22:44:04 1048 1

原创 图像增强-局部直方图统计(均值与方差)

今天,我们讲述的是基于均值与方差的局部图像增强方法,直方图均衡化是对于整张图片就行的,但很多时候我们只需要调整部分区域的像素和对比度的时候,我们就可以使用今天这个局部直方图增强方法了,这个方法也比较简单,首先我们需要求出全局均值(平均像素值)还有全局方差(像素对比度),后面我们会重点讲解这个方差。我们以萨冈雷斯数字图像处理第四版这个案例来具体讲解,从结果图可以看出源图像黑色区域内是有隐藏的特征的,我们要怎么找到这些区域来显示这些特征呢?

2025-12-07 20:29:49 1221

原创 图像增强-直方图匹配

这里,我们已经将源图像和目标图像的概率积累分布CDF计算出来了,这个时候我们需要将源图像的CDF映射为目标图像的CDF,在萨冈雷斯图像处理第四版里写的较为简单,他是通过寻找目标图像CDF里面第一个大于源图像CDF的值作为插入值,这样计算会导致图像失真,导致图像差异比较大,这里我们采用线性插值的方法,寻找最合适的图像像素值。通过RGB三通道图像和Lab格式图像测试可以发现,我们使用同一张图像进行RGB三通道的直方图匹配,最后显示为灰度图,当你对每个通道(R,G,B)分别做匹配时,即使两张图一致,

2025-12-06 13:58:20 905

原创 图像增强-直方图均衡化

首先,直方图均衡化之前,我们需要计算一幅图像中,各个像素的所占比例,也就是概率分布,计算出图像在[0, 255]中所有像素的直方图(绘制),通过计算出来的直方图去做直方图均衡化的CDF概率计算。所以我们这里讲一下怎么计算直方图,我会介绍两种方法,分别是手动底层计算直方图和调用OpenCV的API去计算直方图,建议大家学习一下如何底层计算。

2025-12-03 22:53:03 802

原创 对比度拉伸-图像增强

首先,我们来说一下,对比度拉伸,分为线性对比度拉伸和阈值对比度拉伸,以下图片来源于萨冈雷斯数字图像处理第四版,基于这张图片我们来理解一下什么是线性和阈值,首先线性对比度拉伸,我们可以假设的看作y = ax,这幅图中,我们令r1 = 0, s1 = s2, r2 = L-1,这个时候就是线性的对比度拉伸了,不就是y = ax嘛?

2025-11-26 22:50:24 766

原创 灰度化-图像增强

恒等灰度变换,没什么好说的了,就是最普通的灰度转换,直接调用API即可,讲一下灰度反转,我们知道,对于8比特的像数值,其范围分布为[0, 255],对于灰度级分布在[0, L -1]的图像经过反转后的灰度级别应该为[255, 255 - L -1],灰度反转比较简单,其实就是最大像素值减去目前像素值即可。

2025-11-24 22:44:17 448

原创 仿射变换原理讲解

相信学过图像学的同学们都听过仿射变换,他在数据增强方面有着很高的地位,仿射变换包括旋转、缩放、剪切以及平移,在图像矫正方面也有所涉及,今天这篇博客主要讲的就是仿射变换的底层代码原理和数学原理。一步步剖析仿射变换的实现过程。

2025-11-23 14:58:50 775

原创 vision studio 编译PowerVR SDK-R25.1-v14.1

本文详细介绍了PowerVR SDK的下载与编译方法。首先说明从GitHub获取最新版SDK的两种方式:直接下载ZIP或使用git命令克隆项目。接着介绍两种编译方案:命令行方式和Cmake GUI方式,推荐后者并给出具体操作步骤。重点讲解了将Win32平台转换为x64的方法,以及解决VS2017编译过程中可能遇到的工具集不兼容和语法错误的方案。最后指出通过修改代码格式、清理解决方案后即可成功编译运行示例程序。文章为开发者提供了完整的PowerVR SDK配置指南。

2025-10-30 20:37:32 971

原创 【无标题】PowerVr SDK

对于最新版的PowerVR SDK的submodules组件,需要clone源代码的时候直接拉取,直接下载zip文件是不行的,所以对于那些没有外网的朋友,这个能直接帮助到你们。

2025-10-24 21:42:40 101

Visual Assist2017版本资源

vision studio 2017版本的visiual assist插件

2025-12-16

PowerVR SDK最新版资源

PowerVR SDK最新版资源

2025-10-24

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除