periodHigh.name = ‘periodHigh’
periodLow.name = ‘periodLow’
RSV.name = ‘RSV’
写到这里,查看一下生成的数据:
对RSV作简要描述性分析
RSV.describe()
然后,我们绘制平安银行2020年数据的收盘价曲线图和RSV曲线图
提取数据
C_RSV=pd.DataFrame([close[‘2020’],RSV[‘2020’]]).transpose()
绘图
plt.rcParams[‘font.sans-serif’] = [‘SimHei’]
C_RSV.plot(subplots=True, title=‘未成熟随机指标RSV’)
RSV的取值在0~100之间,且波动范围较大。且有很多时候RSV取值接近或等于0或者100。
接下来,再绘制其K线图进一步对照:
import mplfinance as mpf
s = mpf.make_mpf_style(base_mpf_style=‘blueskies’, rc={‘font.family’: ‘SimHei’})
add_plot=[mpf.make_addplot(RSV[‘2020’])]
mpf.plot(df[‘2020’],type=‘candle’, style=s, title=‘平安银行2020年K线图及未成熟随机指标RSV’, addplot=add_plot,volume=True)
图像效果如下:
分析图像可知,处于上涨行情时,蜡烛图的上影线较短或者没有上影线,在部分交易日中收盘价接近或等于最高价。
由RSV计算公式和n=9可推知,若收盘价等于9日最高价,RSV取值则为100。
在下跌行情时,蜡烛图的下影线较短或者几乎没有,收盘价很有可能等于9日最低价,当收盘价接近或等于等于9日最低价的时候,RSV取值接近或为0。
当市场处于连续上涨行期的时候,未成熟随机指标RSV取值也逐渐增大,并且可能在较多日期中取值为100;当市场处于连续下跌行期的时候,RSV取值可能在较多行期中取值为0。
当RSV连续多期取值为0或100的时候,RSV则会出现所谓“钝化”的现象。
例如当收盘价在上涨行情高位变化的时候,RSV一段时间的取值均为100,不随收盘价的变化而波动,则失去了捕捉收盘价变化的作用。
需要注意的是,RSV的波动幅度较大,也可能会造成“假信号”。一种可能的情况是,在上涨行期中收盘价上涨幅度稍微增大,则可能造成RSV取值过大,进而释放出“超买”行期的假信号。
为了解决RSV波动幅度较大的问题,我们引入K指标。它是对RSV值进行平滑得到的结果。
==================================================================================
K值由前一日的K值和当期RSV值经过一定权重调整后相加得到,一般来说,K值的计算为:
K 值 = 2 3 × 前 一 日 K 值 + 1 3 × 当 日 R S V \displaystyle K值=\frac{2}{3}×前一日K值+\frac{1}{3}×当日RSV K值=32×前一日K值+31×当日RSV
即 K t = 2 3 × K t − 1 + 1 3 × R S V t \displaystyle K_t=\frac{2}{3}×K_{t-1}+\frac{1}{3}×RSV_t Kt=32×Kt−1+31×RSVt
D值是由前一日的D值和当期K值经过一定权重相加而得到。一般来说,D值的计算为:
D 值 = 2 3 × 前 一 日 D 值 + 1 3 × 当 日 K 值 \displaystyle D值=\frac{2}{3}×前一日D值+\frac{1}{3}×当日K值 D值=32×前一日D值+31×当日K值
即 D t = 2 3 × D t − 1 + 1 3 × K t \displaystyle D_t=\frac{2}{3}×D_{t-1}+\frac{1}{3}×K_t Dt=32×Dt−1+31×Kt
此外,在计算第一期K和D值时,如果没有指定,则K值和D值都默认取值为50。在K值和D值的求解过程中,平滑权重2/3和1/3是较为常用的权重,这两个权重也可以根据股价走势的特点进行适当修改。
(通过递归和迭代,我们可以发现K值是由未成熟随机指标RSV通过指数移动平均而得到的。D值是K值的指数移动平均数。)
计算K值
KValue = pd.Series(0.0, index=RSV.index)
KValue[0] = 50
for i in range(1,len(RSV)):
KValue[i] = 2/3*KValue[i-1] + RSV[i]/3
KValue.name = ‘KValue’
接着计算D值
DValue = pd.Series(0.0, index=RSV.index)
DValue[0] = 50
for i in range(1, len(RSV)):
DValue[i] = 2/3*DValue[i-1] + KValue[i]/3
DValue.name = ‘DValue’
KValue = KValue[1:]
DValue = DValue[1:]
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数Python工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年Python开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Python开发知识点,真正体系化!
由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新
如果你觉得这些内容对你有帮助,可以添加V获取:vip1024c (备注Python)
文末有福利领取哦~
👉一、Python所有方向的学习路线
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
👉二、Python必备开发工具
👉三、Python视频合集
观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉 四、实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(文末领读者福利)
👉五、Python练习题
检查学习结果。
👉六、面试资料
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
👉因篇幅有限,仅展示部分资料,这份完整版的Python全套学习资料已经上传
一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
👉因篇幅有限,仅展示部分资料,这份完整版的Python全套学习资料已经上传
一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
[外链图片转存中…(img-DtqKePoZ-1712504017461)]