自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(57)
  • 收藏
  • 关注

原创 计算机视觉--Opencv(郁金香图像轮廓提取与多边形逼近)

,表示反向二值化,即像素值低于阈值的设置为 255(白色),高于阈值的设置为 0(黑色)。绘制红色原始轮廓,再调用一次该函数绘制绿色近似轮廓,OpenCV 会自动将两种轮廓叠加在同一张图上,红色和绿色对比清晰,能直观看到轮廓近似的简化效果。),表示压缩轮廓点,只保留轮廓的关键点(如直线的端点、曲线的拐点),能够大幅减少轮廓点的数量,节省内存空间。),表示只提取最外层的轮廓,忽略内部的子轮廓,这正是我们需要的郁金香外部轮廓;(红色的为原始轮廓,绿色的为近似轮廓)第一个参数:待二值化的灰度图像(

2026-01-28 17:21:26 227

原创 计算机视觉--Opencv(轮廓检测+轮廓特征+轮廓近似)

轮廓是图像中,是区别于边缘检测的关键概念边缘检测仅提取灰度突变的离散像素点,而轮廓强调闭合性与整体性,能完整描述物体的形状边界。OpenCV 处理轮廓有一个硬性前提 ——(黑白两色)。因为二值化通过阈值分割将目标物体与背景完全分离,消除颜色、灰度渐变的干扰,让计算机能精准识别物体边界。因此,轮廓处理的为:图像读取→灰度转换→二值化→轮廓检测→特征分析→轮廓近似,后续所有操作均围绕提取的轮廓集合展开。

2026-01-27 17:13:52 706

原创 计算机视觉--Opencv(边缘检测)

梯度计算会产生正负值(比如从亮到暗为负,从暗到亮为正),但图像像素值的显示范围是 0-255(uint8 类型),负数会被直接截断为 0,导致部分边缘信息丢失。Sobel 算子的核心是通过两个 3×3 的卷积核(分别对应 X、Y 方向),与图像进行卷积运算,计算出每个像素点的梯度值,梯度值越大,说明该点越可能是边缘。Scharr 算子是 Sobel 算子的改进版本,使用更大的卷积核(3×3),对边缘的检测精度更高,尤其适合高分辨率图像或需要精细边缘的场景。X 方向梯度:检测垂直边缘(像素值在水平方向突变)

2026-01-26 15:20:04 1108

原创 计算机视觉--Opencv(图像形态学)

图像形态学是一种处理图像形状特征的图像处理技术,主要用于描述和处理图像中的形状和结构。形态学可以用于提取图像中的特征、消除噪声、改变图像的形状等。图像形态学的本质是利用结构元素(Kernel)对图像中的像素集合进行遍历和运算,结构元素可以理解为一个固定大小的矩阵(常见 3×3、5×5),决定了形态学操作的作用范围和强度。在 OpenCV 中,我们通常使用np.ones()创建结构元素,数据类型需指定为np.uint8(8 位无符号整数,符合图像像素值的存储格式)。

2026-01-25 21:18:02 953

原创 计算机视觉——Opencv(图像平滑处理)

(Image Smoothing)是一种核心的预处理技术,也被称为,其本质是的过程。下面是常用的一些滤波器:1、均值滤波(Blur)2、方框滤波(BoxFilter)3、高斯滤波(GaussianBlur)4、中值滤波(MedianBlur)

2026-01-24 15:22:34 1409 1

原创 计算机视觉——Opencv(基础操作二)

基于 Numpy 数组的元素级运算,每个像素的 BGR 三个通道值分别参与运算注释:c=a+10,表示给a图像的所有像素值+10c = a[50:200,50:250]+b[50:200,50:250],表示参与运算的图像区域。

2026-01-23 17:04:47 1335

原创 机器学习——TF-IDF实战(红楼梦数据处理)

有上图可知,我们的文本中存在电子书.......,章节内容开始......,和一些网址广告,所以我们对他们进行相应处理。

2026-01-22 15:30:03 509

原创 计算机视觉——Opencv(基础操作一)

OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习软件库。它包含大量优化算法,涵盖图像处理、物体检测、人脸识别、3D重建等任务。支持多种编程语言(如C++、Python、Java),并可在Windows、Linux、macOS等平台上运行。

2026-01-22 00:10:34 1268

原创 深度学习——卷积神经网络实现手写数字识别

''' 定义神经网络 类的继承这种方式'''nn.ReLU(),nn.ReLU(),nn.ReLU(),nn.ReLU(),nn.ReLU(),nn.ReLU(),模型结构说明:输入1*28*28(64 张图片作为一个批次。故 64*1*28*28)conv1(一维):卷积 + ReLU + 池化 → 输出 16*14*14conv2(二维):多层卷积 + ReLU + 池化 → 输出 32*7*7conv3(三维):卷积层 → 输出 64*7*7。

2026-01-19 10:42:11 622

原创 机器学习——PCA数据降维

数据的特征又叫做数据的维度,减少数据的特征即降维如何做到最好的降维效果?减少数据维度的同时,能较好地代表原始数据。1. 将原始数据按列组成n行m列矩阵X;2.将X的每一行(代表一个属性字段)进行零均值化, 即减去这一行的均值3.求出协方差矩阵:4.求出协方差矩阵的特征值及对应的特征向量;5.将特征向量按对应特征值大小从上到下按行排列 成矩阵,取前k行组成矩阵P;6.Y=PX即为降维到k维后的数据。

2026-01-16 17:54:20 870

原创 深度学习——卷积神经网络CNN

对图像(不同的窗口数据)和卷积核(一组固定的权重:因为每个神经元的多个权重固定,所以又可以看做一个恒定的滤波器filter)做内积(逐个元素相乘再求和)的操作就是所谓的『卷积』操作,也是卷积神经网络的名字来源。

2026-01-15 20:05:05 1766

原创 机器学习——词向量转化和评论判断项目分析

continue。

2026-01-14 23:07:33 1386

原创 机器学习——自然语言处理之关键词提取任务(TF-IDF)

(1)语料库中存放的是在语言的实际使用中真实出现过的语言材料;(2)语料库是以电子计算机为载体承载语言知识的基础资源;(3)真实语料需要经过加工(分析和处理),才能成为有用的资源。

2026-01-12 16:27:21 1361

原创 机器学习——DBSCAN算法

K-means算法的优点:简单,快速,适合常规的数据集缺点:k值难以确定,很难发现任意形状的簇针对K-means算法的缺点,我们来介绍新的DBSCAN算法。

2026-01-09 11:22:02 753

原创 深度学习----PyTorch框架(手写数字识别案例)

常用的有:Caffe,TensorFlow,Keras,PyTorcCaffe:优点:只需要配置文件即可搭建深度神经网络模型缺点:安装麻烦,缺失很多新网络模型,近几年几乎不更新TensorFlow:由Google公司开发:1.x版本:缺点:代码比较冗余,上手有难度2.x版本:收购了keras,代码不兼容1.x版本Keras:基于 TensorFlow 封装优点:简化代码难度。PyTorch:Facebook(现 Meta )开发优点:上手极容易,直接套用模板。

2026-01-05 18:41:49 903

原创 深度学习入门(神经网络)

神经网络:每个节点代表一种特定的是由大量的节点(或称“神经元”)和之间相互的联接构成。输出函数:称为激励函数、激活函数(activation function)。每两个节点间的联接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。

2026-01-05 00:01:19 1009

原创 机器学习——K-means聚类

K-means是一种基于距离的划分聚类方法,通过迭代将数据划分为K个簇。核心思想是使簇内样本的平方误差最小化。算法流程包括初始化聚类中心、分配样本到最近中心、重新计算中心位置,直到收敛。

2026-01-04 11:43:35 1417

原创 机器学习——支持向量机(SVM)

classSVCC=1.0degree=3coef0=0.0tol=0.001[source]1.C惩罚因子【浮点数,默认为1.】【软间隔】(1)C越大,对误分类的惩罚增大,希望松弛变量接近0,趋向于对训练集全分对的情况,这样对训练集测试时准确率很高,但泛化能力弱;(2)C值小,对误分类的惩罚减小,允许容错,将他们当成噪声点,泛化能力较强。->>建议通过交叉验证来选择2.kernel核函数【默认rbf(径向基核函数|高斯核函数)】

2025-12-30 19:24:11 1345

原创 机器学习——贝叶斯

正向概率:假设袋子里有10个白球,90个黑球,然后从袋子里面拿出1个球,拿出的球是白球的概率是多少?显然,白球的概率是1/10逆向概率:如果我们事先并不知道袋子里白球、黑球的比例,然后通过多次试验,根据拿出来的球的颜色推测袋子里白球、黑球的比例贝叶斯分类器的代码使用:朴素贝叶斯算法,中文处理classalpha=1.0参数:1.多项式分布的朴素贝叶斯。2.控制模型拟合时的平滑度定义:alpha是一个浮点数,表示添加剂(拉普拉斯/Lidstone)平滑参数。

2025-12-29 14:36:52 1481

原创 集成学习之随机森林

集成学习是将多个基学习器进行组合,来实现比单一学习器显著优越的学习性能。

2025-12-25 20:23:37 789

原创 《深度学习》CUDA安装配置、pytorch库、torchvision库、torchaudio库安装

Torch 是一个开源的机器学习框架,最初由纽约大学和 Facebook 的人工智能研究团队开发。它基于 Lua 编程语言,专注于提供高效的数值计算和深度学习功能。Torch 的核心是一个名为torch的库,支持张量计算、自动微分和 GPU 加速。torchaudio是PyTorch生态系统中的音频处理库,专门为深度学习任务设计。它提供高效的音频加载、预处理、特征提取等功能,并与PyTorch的张量操作无缝集成,支持GPU加速。torchvision是PyTorch的官方扩展库,专注于计算机视觉任务。

2025-12-24 15:53:25 1124

原创 决策树项目——电信客户流失预测

在机器学习中,性能测量是一项基本任务。因此,当涉及到分类问题时,我们可以依靠AUC - ROC曲线。当我们需要检查或可视化多类分类问题的性能时,我们使用AUC(曲线下面积)ROC(接收器工作特性)曲线。它是检查任何分类模型性能的最重要评估指标之一。

2025-12-21 23:48:04 226

原创 机器学习——决策树之回归树

解决回归问题的决策树模型你就是回归树回归树是一种基于决策树的监督学习算法,用于解决回归问题。通过递归地将特征空间划分为多个子区域,并在每个子区域内拟合一个简单的预测值(如均值),实现对连续目标变量的预测。

2025-12-20 17:01:14 1201

原创 机械学习逻辑回归——银行贷款案例

模型没有训练好。

2025-12-20 15:05:41 557

原创 机器学习——决策树

决策树是一种直观且易于解释的,广泛应用于分类和回归任务。它通过模拟人类决策过程,将复杂问题拆解为一系列简单的判断规则,最终形成类似 “树” 状的结构。以下从基础概念、原理、算法类型、优缺点及应用场景等方面展开详细介绍。

2025-12-18 21:48:19 1579

原创 机器学习——逻辑回归

逻辑回归是一种用于的统计方法,尽管名称中包含"回归",它通过将线性回归的输出映射到,将预测值转换为概率值(0到1之间),从而进行分类决策。逻辑回归的核心目标是:。

2025-12-16 21:26:45 1505

原创 SQL的导入导出数据和查询

导入数据导出数据。

2025-12-15 20:46:55 221

原创 SQL中表删除与表修改

使用 ALTER TABLE 语句追加, 修改, 或删除列的语法。

2025-12-15 20:43:43 263

原创 SQL的基础

使用形式:SELECT column1, column2, ... FROM table_name WHERE condition;其中,SELECT关键字用于指定要查询的列,可以使用*代表所有列;FROM关键字用于指定要查询的表;WHERE关键字用于指定查询的条件。

2025-12-14 20:48:23 353

原创 SQL的语言分类

核心作用:定义 / 修改 / 删除数据库对象(表、索引、视图、触发器、数据库等)的结构,操作会直接生效(无需事务提交)。核心关键字CREATE(创建)、ALTER(修改)、DROP(删除)、TRUNCATE(清空表,属于 DDL 而非 DML)、RENAME(重命名)。-- 创建用户表age INT,-- 给用户表新增email字段-- 删除用户表-- 清空用户表(删除所有数据且不可回滚)注意:执行后通常需要COMMIT(提交)确认修改,或ROLLBACK(回滚)撤销修改(事务控制)。

2025-12-14 16:04:09 301

原创 Pandas库的基础数据类型

print(df)

2025-12-14 15:55:11 408

原创 sklearn实现一元线性回归——分析广告投入和销售额的关系

pandas是Python中用于数据处理和分析的核心库,提供DataFrame数据结构。常用于数据清洗、转换、统计分析等操作。

2025-12-12 15:22:46 250

原创 机器学习——线性回归

线性回归是利用数理统计中回归分析,来确定两种或两种以上间的定量关系的一种统计分析方法:包含因果关系和平行关系:回归分析(原因引起结果,需要明确自变量和因变量):相关分析(无因果关系,不区分自变量和因变量)

2025-12-11 22:50:39 1448

原创 Python中的网络爬虫

表示访问网站的搜索引擎,User - agent的值为 * 表示所有类型的搜索引擎;如果User - agent后面加,就表示Wandoujia Spider搜索引擎需要遵守的规则Disallow:表示该搜索引擎不允许访问的url表示该搜索引擎允许访问的urlSitemap:网站地图,用于提供网站中所有可以被爬取的url,方便搜索引擎能够快速爬取到对应网页代表注释,与python的概念相同是说爬虫每次访问时间间隔5秒,为了避免因用户频繁访问而导致服务器拥挤,使用户无法正常使用浏览器。

2025-12-11 15:11:11 1514

原创 Python 第三方库的安装与卸载指南

pip 是 Python 官方的包管理工具,几乎所有主流第三方库都支持。

2025-12-10 18:08:21 386

原创 网络爬虫——selenium库驱动浏览器

用于Web应用程序测试的工具。可以驱动浏览器执行特定操作,自动按照脚本代码做出点击,输入,打开,验证等操作,就像真实用户所做的一样。支持的浏览器包括IE,Firefox,Safari,edge,Chrome等。

2025-12-09 20:46:24 636

原创 机器学习的开篇KNN算法

全称(K-Nearest Neighbors),通过寻找k个距离最近的数据,来确定当前数据值的大小或类别,是机器学习中最为简单和经典的一个算法。

2025-12-08 22:54:10 1792

原创 Pandas库和画图

pandas是一个开源的Python数据分析库,提供高性能、易用的数据结构和数据分析工具。核心数据结构包括Series(一维数据)和DataFrame(二维表格),支持数据清洗、转换、聚合及可视化等操作。

2025-12-07 18:47:16 831

原创 MySQL的安装

停止firewall# 禁止开机自启# 查看防火墙状态。

2025-12-05 20:05:40 645

原创 第三方库Numpy

NumPy(Numerical Python)是 Python 中用于科学计算的核心库,提供高性能的多维数组对象及工具,支持大规模数据操作、数学函数、线性代数、随机数生成等。

2025-12-05 14:26:06 973

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除