整理了当年使用过的一些,大数据生态圈组件的特性和使用场景,若有不当之处,请留言斧正,一起学习成长。
组件名 | 属性标签 | 特性 | 使用场景 | 价格成本 |
Mysql | 关系型数据库,行式存储,支持sql | 轻量级数据分析,存储 | hive的元数据,kettle的资源库,web 应用后台库。 | 社区版和商业版 |
Oracle | 关系型数据库,行式存储,支持sql | 中量级数据分析,存储。可分布式 | BI(商业智能) | 社区版和商业版 |
Hive | 基于HDFS的数据仓库,可行(textfile)可列(parquet)存储,支持sql | 支持数据量大,依赖jdk,hadoop,元数据存储一般使用mysql | 数据仓库,离线大数据集的批处理作业 | 开源 |
Spark | 基于内存的大规模数据处理快速通用的计算引擎,支持sql | Job中间输出结果可以保存在内存中,从而不再需要读写HDFS。 通用引擎: 支持SQL 查询、文本处理、机器学习 |
适用于数据挖掘与机器学习; hive on saprk的快速离线计算 |
开源 |
Spark Streaming | 流式处理 | 高吞吐量的、具备容错机制的实时流数据的处理 |