+ [决策树分类代码](#_10)
+ - [导入必备库](#_11)
- [加载数据集](#_20)
- [数据集划分](#_27)
- [创建决策树模型](#_34)
- [训练决策树模型](#_39)
- [模型测试](#_52)
- [可视化预测结果](#_62)
概述
使用scikit-learn自带决策树类(DecisionTreeClassifier)与鸢尾花数据进行分类任务
环境配置
*python 3.10
*pycharm
*scikit-learn
决策树分类代码
导入必备库
import matplotlib.pyplot as plt
import sklearn.tree
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
加载数据集
# 加载鸢尾花数据集
iris = load_iris()
X = iris.data
y = iris.target
数据集划分
# 将数据集分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
test_size表示训练集与测试集的划分比例,如代码中0.3表示30%作为测

本文介绍了如何使用Python的scikit-learn库,通过决策树分类器对鸢尾花数据集进行训练、测试,并展示了模型创建、训练过程以及预测结果的可视化。内容涵盖了数据预处理、模型构建和评估的关键步骤。
最低0.47元/天 解锁文章
8541

被折叠的 条评论
为什么被折叠?



