- 博客(330)
- 收藏
- 关注
原创 数据分析案例-机器学习工程师薪资数据可视化分析
本实验数据集来源于Kaggle,原始数据集中共有16494条数据,11个变量,各变量含义如下:work_year:收集薪资数据的年份(例如,2024 年)。experience_level:员工的经验水平(例如,MI 表示中级)。employment_type:就业类型(例如,FT 表示全职)。job_title:职位名称(例如数据科学家)。salary:工资金额。salary_currency:工资的计价货币(例如,USD 代表美元)。salary_in_usd:转换为美元的工资金额。
2024-10-07 15:47:05 1973 67
原创 分享Python7个爬虫小案例(附源码)
本次的7个python爬虫小案例涉及到了re正则、xpath、beautiful soup、selenium等知识点,非常适合刚入门python爬虫的小伙伴参考学习。
2022-10-22 07:00:00 135882 216
原创 大数据分析案例-基于逻辑回归算法构建抑郁非抑郁推文识别模型
本项目基于逻辑回归算法构建抑郁非抑郁推文识别模型具有重要的研究背景和应用价值。通过该模型的研究和应用,我们可以更好地理解和预测社交媒体中用户的心理健康状况,为抑郁症等心理疾病的防治提供有力的支持。在本次实验中,我们探索了使用不同的机器学习算法——逻辑回归、决策树和XGBoost——来构建抑郁非抑郁推文识别模型。经过严格的模型训练和验证过程,我们对比了三种模型的性能,并发现逻辑回归模型在准确率上达到了91%,超过了决策树和XGBoost模型。因此,我们最终选择了逻辑回归模型作为本次实验的最终模型。
2024-10-04 08:54:00 5255 80
原创 ROSTCM6+Gephi的网络语义分析详细教程(附案例实战)
ROSTCM6是武汉大学沈阳教授研发编码的国内目前唯一的以辅助人文社会科学研究的大型免费社会计算平台。该软件可以实现微博分析、聊天分析、全网分析、网站分析、浏览分析、分词、词频统计、英文词频统计、流量分析、聚类分析等一系列文本分析。Gephi是一款开源免费跨平台基于JVM的复杂网络分析软件,可用于各种图形和网络的可视化和探索,是最受欢迎的网络可视化软件之一。
2024-09-28 15:03:26 6449 53
原创 模糊综合评价法详细讲解+Python代码实现
模糊评价问题是要把论域中的对象对应评语集中一个指定的评语或者将方案作为评语集并选择一个最优的方案。在模糊综合评价中,引入三个集合:例:评价一名学生的表现U ={专业排名、课外实践、志愿服务、竞赛成绩}V={优、良、差}模糊综合评价模型就是给定对象,用因素集的指标进行评价,从评语集中找到一个最适合它的评语。如果评语集中是方案的话,就是选出一个最恰当的方案。那这种“合适”用什么来衡量呢?显而易见嘛,就是隶属度,隶属于某个模糊集合的程度。
2024-09-27 08:24:24 7455 75
原创 数据挖掘实战-基于SARIMA时间序列模型预测阿里巴巴股票数据趋势
本实验数据集来源于Kaggle,数据集包含阿里巴巴集团控股公司(BABA)从[2020年1月1日]到[2024年5月1日]的历史股价数据。数据集包括每日开盘价、最高价、最低价和收盘价,以及调整后的收盘价和成交量。本实验利用SARIMA时间序列模型对阿里巴巴股票价格进行趋势预测,并得出以下结论:通过对阿里巴巴股票历史数据的分析和建模,我们成功地建立了SARIMA模型,能够较好地拟合股票价格的波动情况。该模型考虑了数据的季节性、自相关和移动平均性质,具有一定的预测能力和准确性。
2024-09-22 15:16:11 10668 88
原创 数据分析案例-2024年QS世界大学排名数据可视化分析
数据集来源于Kaggle,原始数据集共有1498条,29个变量。关于数据集2024 年 QS 世界大学排名:全球顶尖大学第 20 版 QS 世界大学排名涵盖了 104 个地区的 1,500 所院校,是同类中唯一强调就业能力和可持续性的排名。今年,他们实施了有史以来最大规模的方法改进,引入了三个新指标:可持续性、就业成果和国际研究网络。该结果基于对 1750 万篇学术论文的分析以及超过 240,000 名学术教师和雇主的专家意见。
2024-09-19 10:59:48 12245 114
原创 熵权法详细讲解+Python代码实现
熵权法,物理学名词,按照信息论基本原理的解释,信息是系统有序程度的一个度量,熵是系统无序程度的一个度量;根据信息熵的定义,对于某项指标,可以用熵值来判断某个指标的离散程度,其信息熵值越小,指标的离散程度越大,该指标对综合评价的影响(即权重)就越大,如果某项指标的值全部相等,则该指标在综合评价中不起作用。因此,可利用信息这个工具,计算出各个指标的权重,为多指标综合评价提供依据。熵权法是一种客观的赋权方法,它可以靠数据本身得出权重依据的原理:指标的变异程度越小,所反映的信息量也越少,其对应的权值也应该越低
2024-09-16 10:51:08 13819 79
原创 数据挖掘实战-基于朴素贝叶斯算法构建真假新闻分类模型
本实验数据集来源于Kaggle,合并后的数据集共有44898条,5个变量。关于数据集数据集分为两个文件:Fake.csv(23502 条假新闻文章)True.csv(21417 篇真实新闻文章)数据集列:标题:新闻文章的标题文本:新闻文章的正文主题:新闻文章的主题日期:新闻文章的发布日期。
2024-09-13 13:38:21 11691 91
原创 数据分析案例-视频游戏销量数据集可视分析
本实验数据集来源于Kaggle,原始数据集共有64016条,14个变量,各变量含义如下:img是vgchartz.com网站上游戏封面图片的URL(类型:字符串)。title是游戏的名称(类型:字符串)。console是指游戏为(类型:字符串)发布的控制台。genre是指游戏的类型(类型:字符串)。publisher是游戏的供应商(类型:字符串)developer是游戏的开发商(类型:字符串)critic_score是指Metacritic评分(0-10范围)(实数)。
2024-09-10 14:29:16 10096 95
原创 TOPSIS法详细讲解+Python代码实现
TOPSIS法是一种常用的综合评价方法,能充分利用原始数据的信息,其结果能精确地反映各评价方案之间的差距。TOPSIS法引入了两个基本概念:理想解:设想的最优的解(方案),它的各个属性值都达到各备选方案中的最好的值;负理想解:设想的最劣的解(方案),它的各个属性值都达到各备选方案中的最坏的值。方案排序的规则是把各备选方案与理想解和负理想解做比较,若其中有一个方案最接近理想解,而同时又远离负理想解,则该方案是备选方案中最好的方案。TOPSIS通过最接近理想解且最远离负理想解来确定最优选
2024-09-07 15:47:36 10718 90
原创 【SPSS】基于因子分析法对葡萄酒数据进行分析
通过研究葡萄酒数据集做出以下分析:①使用因子分析对数据进行因子提取②构建葡萄酒分类模型wine样本数据集中是double类型的178 * 14矩阵包括了三种酒中13种不同成分的数量。文件中,每行代表一种酒的样本,共有178个样本,一共有14列,其中,第一个属性是类标识符,分别是1/2/3来表示,代表葡萄酒的三个分类。后面的13列为每个样本的对应属性的样本值。
2024-09-03 19:20:26 8728 84
原创 数据分析案例-2024年裁员数据集可视化分析
本实验数据集来源于Kaggle,原始数据集为2020-2024年裁员数据,共有3577条,12个变量,该数据集提供了不同公司的裁员信息。它包括以下几栏:Company:裁员发生的公司名称。Location_HQ:公司总部位置。Industry:公司所属的行业或部门。Laid_Off_Count:公司解雇的员工数量。Percentage:公司员工被解雇的百分比。Date:裁员发生的日期。Source:信息来源网址。Funds_Raised:公司募集资金的信息。
2024-08-25 15:20:55 11588 93
原创 基于Python爬虫+机器学习的长沙市租房价格预测研究
本实验数据集来源于房天下官网,通过使用python爬虫获取了长沙市的租房数据获取了房屋租金、交付方式、房屋户型、房屋面积、装修情况、校区、地址、配套设施、房源亮点等字段信息,具体如下图所示。
2024-08-12 16:12:28 12068 128
原创 已解决AttributeError: module ‘emoji‘ has no attribute ‘get_emoji_regexp‘
将emoji库降低为2.0.0之前的版本即可,例如使用命令pip install emoji==1.7.0
2024-08-06 08:32:55 10552 110
原创 数据挖掘实战-基于Prophet时间序列模型预测阿里巴巴股票价格趋势
Prophet 是由 Facebook 开发的一个开源时间序列预测库,设计考虑了业务场景中的时间序列特点,如季节性变化、假日效应和趋势变化。Prophet 特别适合处理日级别(或以上频率)的时间序列数据,并且在处理缺失数据和异常值方面表现出色。安装学习文档github地址:https://github.com/facebook/prophet文档地址:http://facebook.github.io/prophet。
2024-08-02 09:02:32 12883 79
原创 数据分析案例-2024 年热门动漫数据集可视化分析
本数据集来源于Kaggle,原始数据集共有1000条,22个变量。该数据集全面概述了 2024 年热门动漫,对于构建推荐系统、可视化动漫流行度和评分趋势、预测评分和流行度等非常有用。该数据集包含 22 个特征:Score:分配给每个动漫标题的评级或分数。Popularity:衡量每部动漫在观众中的受欢迎程度。Rank:数据集中每个动漫标题的排名。Members:与每部动漫相关的会员或观众数量。Description:每部动漫的情节和主题的简要概述或摘要。
2024-07-17 11:39:48 12723 110
原创 层次分析法详细讲解+Python代码实现
层次分析法(Analytic HierarchyProcess,简称AHP)是对一些较为复杂、较为模糊的问题作出决策的简易方法,它特别适用于那些难于完全定量分析的问题它是美国运筹学家 T.L. Saaty 教授于上世纪 70年代初期提出的一种简便、灵活而又实用的多准则决策方法。
2024-07-13 16:41:04 9870 71
原创 数据分析案例-2024 年全电动汽车数据集可视化分析
本数据集来源于Kaggle,原始数据集共有177866条数据,17个变量。该数据集显示了目前通过华盛顿州许可部 (DOL) 注册的电池电动汽车 (BEV) 和插电式混合动力电动汽车 (PHEV)。电池电动汽车 (BEV) 是一种全电动汽车,使用一个或多个电池来存储电能,为电机提供动力,并通过将车辆插入电源进行充电。插电式混合动力汽车 (PHEV) 是一种使用一个或多个电池为电动机提供动力的车辆;使用另一种燃料,例如汽油或柴油,为内燃机或其他推进源提供动力;并通过将车辆插入电源来充电。
2024-07-09 18:14:02 12218 87
原创 使用CiteSpace软件对知网文献进行关键词共现/聚类/突现分析
一、基本概念CiteSpace(引文空间)是一款专注于分析科学分析中蕴含的潜在知识的软件。它是在科学计量学、数据可视化背景下逐渐发展起来的引文可视化分析软件。通过可视化的手段,CiteSpace能够呈现科学知识的结构、规律和分布情况,并因此将这种分析得到的可视化图形称为“科学知识图谱”。二、主要功能和用途知识图谱构建:根据科学文献的引用关系,CiteSpace可以生成知识图谱,帮助研究人员更好地理解学术领域中不同文献之间的联系和演化过程。主题聚类分析。
2024-07-03 16:34:59 11600 98
原创 体验升级:扫描全能王智能高清滤镜2.0全面测评
经过对扫描全能王智能高清滤镜2.0的深入测评,我们不难看出其在文档扫描领域的出色表现。这款产品不仅运用了先进的深度学习技术和多尺度感知融合方法,提升了文档的清晰度、去除了透字效果,还在文档处理效果和颜色保留效果上进行了全面升级。在实际使用中,智能高清滤镜2.0展现了强大的处理能力和高效的工作效率,无论是处理带有褶皱、阴影或透字的复杂文档,还是进行曲面矫正和颜色还原,都能达到令人满意的效果。这种高效且准确的文档处理能力,对于需要频繁处理文档的职场人士和专业人士来说,无疑是一大福音。
2024-07-01 07:59:06 15323 83
原创 基于文本挖掘的卡塔尔世界杯赛事网络舆情演变与趋势预测
本文通过爬取微博、B站、咪咕等视频平台上卡塔尔世界杯赛事相关博文数据和视频评论,在数据预处理中进行了基于原创文本量、点赞量、评论量、转发量、ip属地统计量的统计分析,并通过分析不同时期的相关数据量发展趋势划分了三个热点事件发展阶段,发展时期、爆发时期、消亡时期。
2024-06-18 17:11:01 9177 87
原创 数据分析案例-钻石数据集可视化分析
本实验数据集来源于Kaggle,原始数据集共有53940条数据,10个变量,各变量解释如下:carat:克拉是衡量钻石重量的单位。一克拉相当于200毫克。cut:钻石的切割指的是它的比例、对称和抛光。这是决定钻石亮度和亮度的关键因素。color:钻石的颜色是指钻石是否有颜色。美国宝石学会(GIA)将钻石的颜色分为D级(无色)到Z级(浅黄色或棕色)。clarity:净度衡量钻石内部缺陷(内含物)和外部瑕疵(瑕疵)的存在。
2024-06-12 08:37:33 11437 90
原创 数据挖掘实战-基于Catboost算法的艾滋病数据可视化与建模分析
本数据集来源于Kaggle,数据集包含有关被诊断患有艾滋病的患者的医疗保健统计数据和分类信息。该数据集最初于 1996 年发布。time:失败或审查的时间trt:治疗指标(0 = 仅 ZDV;1 = ZDV + ddI,2 = ZDV + Zal,3 = 仅 ddI)age:基线年龄(岁)wtkg:基线时的体重(公斤)hemo:血友病(0=否,1=是)homo:同性恋活动(0=否,1=是)drugs:静脉注射药物使用史(0=否,1=是)karnof:卡诺夫斯基分数(范围为 0-100)
2024-06-07 21:32:27 11412 53
原创 数据挖掘实战-基于长短期记忆网络(LSTM)的黄金价格预测模型 | 97% 准确度
本实验基于Kaggle上提供的从2013年到2023年的黄金价格数据集,运用长短期记忆网络(LSTM)构建了黄金价格预测模型。该数据集详细记录了每日的黄金价格信息,包括开盘价、收盘价、高点、低点和交易量等,为模型的训练提供了丰富的数据支持。
2024-06-04 08:33:51 13835 90
原创 数据分析案例-在线食品订单数据可视化分析与建模分类
本实验数据集来源于Kaggle在线食品订单数据集该数据集包含一段时间内从在线订餐平台收集的信息。它包含与职业、家庭规模、反馈等相关的各种属性。Age:顾客的年龄。Gender:客户的性别。Marital Status:客户的婚姻状况。Occupation:客户的职业。Monthly Income:客户的月收入。Educational Qualifications:客户的教育资格。Family size:客户家庭中的人数。latitude:客户所在位置的纬度。
2024-05-31 21:08:00 10705 100
原创 【SPSS】基于因子分析法对水果茶调查问卷进行分析
本次数据集来源于天池网,数据集是一份关于水果茶调查问卷中的一道量表题数据,共有1381条数据,9个维度,每个维度值范围为1-5,具体信息如下表:属性名称数据类型名称Int整数类型 值范围1-5包装Int整数类型 值范围1-5品质Int整数类型 值范围1-5价格Int整数类型 值范围1-5口味Int整数类型 值范围1-5制作过程透明Int整数类型 值范围1-5服务态度Int整数类型 值范围1-5网络热度Int整数类型 值范围1-5。
2024-05-29 22:01:54 9827 87
原创 数据挖掘实战-基于余弦相似度的印度美食推荐系统
印度美食由印度次大陆本土的各种地区和传统美食组成。由于土壤、气候、文化、种族和职业的多样性,这些菜肴差异很大,并使用当地可用的香料、香草、蔬菜和水果。印度食物也深受宗教(特别是印度教)、文化选择和传统的影响。本数据集来源于Kaggle,原始数据集共有255条,8个变量,各变量含义解释如下:name : 菜肴名称ingredients:主要使用成分diet:饮食类型 - 素食或非素食prep_time : 准备时间Cook_time : 烹饪时间。
2024-05-27 16:39:05 9565 88
原创 数据挖掘实战-基于内容协同过滤算法的电影推荐系统
本研究通过构建并优化基于内容协同过滤算法的电影推荐系统,成功实现了对用户个性化电影推荐需求的精准满足。实验结果表明,该系统能够结合电影内容特征和用户行为数据,为用户提供更加符合其兴趣和偏好的电影推荐。相较于单一的推荐方法,该系统展现出了更高的推荐准确性和用户满意度,从而验证了内容协同过滤算法在电影推荐系统中的有效性和优越性。
2024-05-24 16:24:03 17410 87
原创 618编程书单推荐:解锁你的编程潜能
亲爱的开发者们,👋在这个快速发展的技术时代,不断学习和提升自己的编程技能是每位程序员的必修课。今天,我为大家精心挑选了一系列编程技术书籍,它们将是你技术成长道路上的宝贵财富。
2024-05-22 16:29:38 8850 75
原创 大数据分析案例-基于xgboost算法构建互联网防火墙异常行为识别模型
随着互联网的快速发展,网络安全问题日益凸显。互联网防火墙作为网络安全的第一道防线,负责监控和过滤进出网络的数据包,以阻止恶意攻击和非法访问。然而,随着网络攻击手段的不断更新和复杂化,传统的防火墙技术已难以满足日益增长的安全需求。因此,开发一种高效、智能的异常行为识别模型对于提升防火墙的防护能力具有重要意义。 近年来,机器学习算法在各个领域取得了显著的成功,尤其在处理大规模、高维度数据时展现出了强大的优势。XGBoost作为一种基于梯度提升决策树(Gradient Boosting Decisi
2024-05-21 17:00:50 9380 81
原创 基于Python爬虫+机器学习技术的杭州租房价格预测建模研究
本研究旨在结合Python爬虫和机器学习技术,对杭州租房价格进行预测建模与优化研究。通过抓取租房网站上的数据,提取出影响租房价格的关键因素,并利用机器学习算法构建预测模型。通过对模型的优化和验证,我们可以更加准确地预测租房价格,为租房者和房东提供有价值的参考信息,同时也为房地产市场的研究和决策提供数据支持。
2024-05-19 09:25:02 12502 116
原创 数据分析案例-印度美食数据可视化分析
印度美食由印度次大陆本土的各种地区和传统美食组成。由于土壤、气候、文化、种族和职业的多样性,这些菜肴差异很大,并使用当地可用的香料、香草、蔬菜和水果。印度食物也深受宗教(特别是印度教)、文化选择和传统的影响。本数据集来源于Kaggle,原始数据集共有255条,8个变量,各变量含义解释如下:name : 菜肴名称ingredients:主要使用成分diet:饮食类型 - 素食或非素食prep_time : 准备时间Cook_time : 烹饪时间。
2024-05-16 09:22:13 17139 41
原创 数据挖掘实战-基于决策树算法构建银行贷款审批预测模型
本数据集来源于Kaggle,在这个贷款状态预测数据集中,我们有以前根据property Loan的属性申请贷款的申请人的数据。银行将根据申请人的收入、贷款金额、以前的信用记录、共同申请人的收入等因素来决定是否向申请人提供贷款。我们的目标是建立一个机器学习模型来预测申请人的贷款被批准或被拒绝。原始数据集共有381条,13个变量。各变量含义如下:Loan_ID:唯一的贷款ID。Gender:男性或女性。Married:天气结婚(是)或不结婚(否)。Dependents:依赖于客户端的人数。
2024-05-13 09:45:32 16842 119
原创 大数据分析案例-基于随机森林算法构建银行贷款审批预测模型
本项目旨在利用借款人的历史信用记录、财务状况、个人背景等多维度信息,通过机器学习和数据分析技术,构建一个自动化的贷款审批流程。该模型能够快速、准确地评估申请人的信用风险,帮助银行做出更加明智的贷款决策,减少坏账风险,提高贷款业务的盈利能力。此外,该模型还有助于银行实现客户细分和个性化服务。通过对不同申请人群体进行特征分析和风险预测,银行可以更加精准地满足不同客户群体的需求,优化贷款产品设计和定价策略,提升客户满意度和忠诚度。
2024-05-10 08:34:51 8090 94
原创 数据挖掘实战-基于深度学习RNN+CNN的能源价格预测模型
数据集来源于Kaggle,原始数据集共有35064条,28个变量。在当今动态的能源市场中,准确预测能源价格对有效决策和资源配置至关重要。在这个项目中,我们使用先进的深度学习技术——特别是一维卷积神经网络(CNN)和循环神经网络(RNN)——深入研究预测分析领域。通过利用能源价格数据中的历史模式和依赖关系,我们的目标是建立能够高精度预测未来能源价格的模型。通过实验,我们发现每种方法都有自己的优点和局限性。SimpleRNN提供了一个简单且可解释的体系结构,但可能会与长期依赖关系作斗争。
2024-05-07 14:22:22 9820 95
原创 数据挖掘实战-基于CNN深度学习算法构建英文文本分类模型
随着互联网和社交媒体的快速发展,大量的英文文本数据不断产生,如博客、新闻、论坛帖子等。对这些文本数据进行分类和组织成为一项重要的任务,有助于提高信息检索的效率,更好地理解用户需求,以及为各种应用提供有价值的信息。传统的文本分类方法通常基于手工特征工程,然而这种方法不仅耗时,而且对于大规模和高维度的数据集效果有限。近年来,深度学习技术的崛起为文本分类带来了新的解决方案。卷积神经网络(CNN)作为一种在图像识别中取得巨大成功的深度学习算法,也被广泛应用于自然语言处理领域,特别是文本分类任务。
2024-05-03 16:39:02 11032 98
原创 数据分析案例-全球表面温度数据可视化与统计分析
本数据集来源于Kaggle,原始数据集共有144条,19个变量。关于本数据集数据来自美国国家航空航天局GISS表面温度分析(GISTEMP v4)。这些数据集是全球和半球月平均值和区域年平均值的表。他们结合了陆地表面、空气和海洋表面的水温异常(陆地-海洋温度指数,L-OTI)。表中的数值是与相应的1951-1980年平均值的偏差。GISS地表温度分析版本4 (GISTEMP v4)是对全球地表温度变化的估计。
2024-04-29 22:18:24 13196 130
原创 大数据分析案例-基于Catboost+LGBM算法构建银行客户流失预测模型
本项目旨在通过分析某银行客户数据集,通过可视化分析找出影响客户流失的因素,最后实验机器学习中的Catboost、XGBoost、LGBM等集成算法构建银行客户流失预测模型,提高银行客户管理水平。心得与体会:通过这次Python项目实战,我学到了许多新的知识,这是一个让我把书本上的理论知识运用于实践中的好机会。原先,学的时候感叹学的资料太难懂,此刻想来,有些其实并不难,关键在于理解。在这次实战中还锻炼了我其他方面的潜力,提高了我的综合素质。
2024-04-26 18:48:56 9309 98
毕设项目基于RFM-Kmeans算法对超市用户细分(源代码+54w条数据+3500字实验报告).rar
2024-09-20
大数据岗位大厂面试真题附含答案.rar
2024-09-20
《数据采集与网络爬虫》大作业-7个爬虫案例代码+实验报告.rar
2024-06-29
100万条用于改善城市规划的城市交通综合数据集.zip
2024-06-29
数据挖掘-基于朴素贝叶斯算法的电信客户流失分析预测模型(数据集+代码+8000字实验报告).rar
2024-06-29
基于人气与协同过滤的图书推荐系统研究与实践(数据集+代码).rar
2024-06-20
数据挖掘实战-基于word2vec的短文本情感分析(数据集+代码+9000字实验报告).rar
2024-06-20
基于Bagging集成学习方法的情绪分类预测模型研究(数据集+代码).rar
2024-06-20
基于记忆与模型协同过滤的电影推荐系统研究与实践(数据集+代码).rar
2024-06-20
基于LDA主题分析的《老友记》情景喜剧数据集的建模分析(数据集+代码).rar
2024-06-20
基于情感分析+聚类分析+LDA主题分析对服装产品类的消费者评论分析(数据集+代码).rar
2024-06-20
数据分析案例-基于服饰行业中消费者行为和购物习惯的可视化分析(数据集+代码).rar
2024-06-20
数据分析案例-汽车客户信息数据可视化分析(数据集+代码).rar
2024-06-20
基于Python爬虫+词云图+情感分析对某东上完美日记的用户评论分析(数据集+代码).rar
2024-06-20
数据挖掘实战-基于KMeans算法对超市客户进行聚类分群(数据集+代码).rar
2024-06-20
数据分析案例-顾客购物数据可视化分析(数据集+代码).rar
2024-06-20
数据分析案例-数据分析师岗位招聘信息可视化(数据集+代码).rar
2024-06-20
基于Pytorch深度学习的脑肿瘤分类识别(数据集+代码+4000字实验报告).rar
2024-06-20
数据分析案例-航空公司满意度数据可视化(数据集+代码).rar
2024-06-20
基于爬虫+词云图+Kmeans聚类+LDA主题分析+社会网络语义分析对大唐不夜城用户评论进行分析(数据集+代码).rar
2024-06-20
python实现基于长短期记忆网络LSTM模型预测茅台股票价格趋势(数据集+代码).rar
2024-06-20
Python3实现基于ARIMA模型来预测茅台股票价格趋势(数据集+代码).rar
2024-06-20
基于Tomotopy构建LDA主题模型(数据集+代码).rar
2024-06-20
数据分析案例-数据科学相关岗位薪资可视化分析(数据集+代码).rar
2024-06-20
数据分析案例-BI工程师招聘岗位信息可视化分析(数据集+代码).rar
2024-06-20
用Python爬取电影数据并可视化分析(数据集+爬虫分析代码).rar
2024-06-20
数据分析案例-基于因子分析探究各省份中心城市经济发展状况(数据集+代码+实验报告).rar
2024-06-20
ROSTCM6软件下载安装包+使用说明.rar
2024-06-20
基于TF-IDF+KMeans聚类算法构建中文文本分类模型(数据集+代码).rar
2024-06-20
数据分析案例-往届世界杯数据可视化(数据集+代码).rar
2024-06-20
数据分析案例-大数据相关招聘岗位可视化分析(数据集+代码).rar
2024-06-20
数据分析案例-四川省旅游景点数据分析(数据集+代码).rar
2024-06-19
数据分析案例-停车场数据可视化分析(数据集+实验报告+代码).rar
2024-06-19
数据分析案例-电影数据可视化分析(数据集+代码).rar
2024-06-19
实训-利用HTML+CSS做响应式项目网页.rar
2024-06-19
2022年冬奥会奖牌榜数据可视化分析(数据集+代码).rar
2024-05-27
二手车价格数据分析与可视化(数据集+代码).rar
2024-05-27
欺诈性电子商务交易数据集
2024-05-15
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人