python DataFrame的shift()方法

本文详细解释了Pandas库中DataFrame的shift函数,包括periods移动幅度、freq频率选项,以及如何在时间序列数据和非时间序列数据上应用。还通过示例展示了正向和负向移动,以及freq为正数的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

语法

========================================================================

DataFrame.shift(periods=1, freq=None, axis=0)

  • periods可以理解为移动幅度的次数,shift默认一次移动1个单位,也默认移动1次(periods默认为1),则移动的长度为1 * periods。

periods可以是正数,也可以是负数。负数表示前滞,正数表示后滞。

  • freq是一个可选参数,默认为None,可以设为一个timedelta对象。适用于索引为时间序列数据时。

freq为None时,移动的是其他数据的值,即移动periods*1个单位长度。

freq部位None时,移动的是时间序列索引的值,移动的长度为periods * freq个单位长度。

  • axis默认为0,表示对列操作。如果为行则表示对行操作。

移动滞后没有对应值的默认为NaN。

在这里插入图片描述


示例

========================================================================


period为正,无freq


import pandas as pd

pd.set_option(‘display.unicode.east_asian_width’, True)

data = [51.0, 52.33, 51.21, 54.23, 56.78]

index = [‘2022-2-28’, ‘2022-3-1’, ‘2022-3-2’, ‘2022-3-3’, ‘2022-3-4’]

df = pd.DataFrame(data=data, index=index, columns=[‘close’])

df.index.name = ‘date’

print(df)

print(“=========================================”)

df[‘昨收’] = df[‘close’].shift()

df[‘change’] = df[‘close’] - df[‘close’].shift()

print(df)

在这里插入图片描述


period为负,无freq


import pandas as pd

pd.set_option(‘display.unicode.east_asian_width’, True)

data = [51.0, 52.33, 51.21, 54.23, 56.78]

index = [‘2022-2-28’, ‘2022-3-1’, ‘2022-3-2’, ‘2022-3-3’, ‘2022-3-4’]

index = pd.to_datetime(index)

index.name = ‘date’

df = pd.DataFrame(data=data, index=index, columns=[‘昨收’])

print(df)

print(“=========================================”)

df[‘close’] = df[‘昨收’].shift(-1)

df[‘change’] = df[‘昨收’].shift(-1) - df[‘close’]

print(df)

在这里插入图片描述


period为正,freq为正


import pandas as pd

import datetime

pd.set_option(‘display.unicode.east_asian_width’, True)

data = [51.0, 52.33, 51.21, 54.23, 56.78]

index = [‘2022-2-28’, ‘2022-3-1’, ‘2022-3-2’, ‘2022-3-3’, ‘2022-3-4’]

index = pd.to_datetime(index)

index.name = ‘date’

df = pd.DataFrame(data=data, index=index, columns=[‘close’])

print(df)

print(“=========================================”)

print(df.shift(periods=2, freq=datetime.timedelta(3)))

自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数Python工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年Python开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。

img

img

img

img

img

img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上前端开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新

如果你觉得这些内容对你有帮助,可以扫码获取!!!(备注:Python)

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上前端开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新

如果你觉得这些内容对你有帮助,可以扫码获取!!!(备注:Python)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值