需要注意的是根节点的深度(Depth)是0.
从Height和Depth的对比,它们的方向刚好是相反的。
Level
节点的Level是从1开始的,Level = Depth+1,根节点的Level=1
也有很多书籍上Level是从0开始的,这样的话Level就等于Depth,根节点的Level=0
二叉树的分类
满二叉树
在一棵二叉树中。如果所有分支节点都存在左子树和右子树,并且所有叶子节点都在同一层上,这样的二叉树称为满二叉树。
满二叉树的特点有:
1)叶子节点只能出现在最下一层。出现在其它层就不可能达成平衡。
2)非叶子姐弟啊的度一定为2.
3)在同样深度的二叉树中,满二叉树的节点个数最多,叶子数最多。
完全二叉树
除了最后一层都是满的(都有两个子节点),并且最后一层的节点是从左往右排列的。
完全二叉树,通俗点说就是节点按层从左往右排列。如果最后一层排满了就是满二叉树,没有满则是完全二叉树
二叉树性质
1)在二叉树的第i层上最多有2^(i-1) 个节点 。(i>=1)
2)二叉树中如果深度为k,那么最多有2^k-1个节点。(k>=1)
3)n0=n2+1 n0表示度数为0的节点数,n2表示度数为2的节点数。
4)在完全二叉树中,具有n个节点的完全二叉树的深度为[log2n]+1,其中[log2n]是向下取整。
5)若对含 n 个结点的完全二叉树从上到下且从左至右进行 1 至 n 的编号,则对完全二叉树中任意一个编号为 i 的结点有如下特性:
(1) 若 i=1,则该结点是二叉树的根,无双亲, 否则,编号为 [i/2] 的结点为其双亲结点;
(2) 若 2i>n,则该结点无左孩子, 否则,编号为 2i 的结点为其左孩子结点;
(3) 若 2i+1>n,则该结点无右孩子结点, 否则,编号为2i+1 的结点为其右孩子结点。
二叉树的存储结构:
1.顺序存储
顺序存储结构就是使用一维数组存储二叉树中的节点,并且节点的存储位置,就是数组的下标索引。
由上图可以看出,当二叉树为完全二叉树时,节点数刚好存满数组。
如果二叉树不是完全二叉树呢????
上图中,浅色的节点代表不存在,那么顺序存储的结构为:
可以看出,非完全二叉树,会导致空间浪费。
2.链式存储
如果顺序存储不能满足二叉树的存储要求,那么可以考虑使用链式存储。可以将数据结构定义为一个数据和两个指针域。
代码为:
public class TreeNode {
public int val;
public TreeNode left;
public TreeNode right;
public TreeNode(int x) { val = x; }
}
上图的用链式存储为:
二叉树遍历
二叉树的遍历是指从二叉树的根节点出发,按照某种次序依次访问二叉树中的所有接节点,使得每个节点被访问依次,且仅被访问依次。
二叉树的访问次序可以分为四种:
前序遍历
中序遍历
后续遍历
层序遍历
前序遍历
通俗的说就是从二叉树的根结点出发,当第一次到达结点时就输出结点数据,按照先向左再向右的方向访问。
从根结点出发,则第一次到达结点A,故输出A;
继续向左访问,第一次访问结点B,故输出B;
按照同样规则,输出D,输出H;
当到达叶子结点H,返回到D,此时已经是第二次到达D,故不在输出D,进而向D右子树访问,D右子树不为空,则访问至I,第一次到达I,则输出I;
I为叶子结点,则返回到D,D左右子树已经访问完毕,则返回到B,进而到B右子树,第一次到达E,故输出E;
向E左子树,故输出J;
按照同样的访问规则,继续输出C、F、G;
二叉树的前序遍历输出为:
ABDHIEJCFG
中序遍历
中序遍历就是从二叉树的根结点出发,先访问左节点,再访问父节点,最后访问右节点。
从根结点出发,则第一次到达结点A,不输出A,继续向左访问,第一次访问结点B,不输出B;继续到达D,H;
到达H,H左子树为空,则返回到H,此时第二次访问H,故输出H;
H右子树为空,则返回至D,此时第二次到达D,故输出D;
由D返回至B,第二次到达B,故输出B;
按照同样规则继续访问,输出J、E、A、F、C、G;
二叉树的中序遍历输出为:
HDIBJEAFCG
后序遍历
后序遍历就是从二叉树的根结点出发,当第三次到达结点时就输出结点数据,按照先向左在向右的方向访问。
二叉树后序访问如下:
从根结点出发,则第一次到达结点A,不输出A,继续向左访问,第一次访问结点B,不输出B;继续到达D,H;
到达H,H左子树为空,则返回到H,此时第二次访问H,不输出H;
H右子树为空,则返回至H,此时第三次到达H,故输出H;
由H返回至D,第二次到达D,不输出D;
继续访问至I,I左右子树均为空,故第三次访问I时,输出I;
返回至D,此时第三次到达D,故输出D;
按照同样规则继续访问,输出J、E、B、F、G、C,A;
二叉树的后序遍历输出为:
HIDJEBFGCA
虽然二叉树的遍历过程看似繁琐,但是由于二叉树是一种递归定义的结构,故采用递归方式遍历二叉树的代码十分简单。
递归实现代码如下:
package huawei.tree;
public class OrderTraverse {
/二叉树的前序遍历递归算法/
public void preOrderTraverse(TreeNode root) {
if(root == null) {
return;
}
System.out.println(root.val);
preOrderTraverse(root.left); /再先序遍历左子树/
preOrderTraverse(root.right); /最后先序遍历右子树/
}
/二叉树的中序遍历递归算法/
public void inOrderTraverse(TreeNode root) {
if(root == null) {
return;
}
inOrderTraverse(root.left); /中序遍历左子树/
System.out.println(root.val);
inOrderTraverse(root.right); /最后中序遍历右子树/
}
/二叉树的后序遍历递归算法/
public void postOrderTraverse(TreeNode root) {
if(root == null) {
return;
}
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数Java工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年Java开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Java开发知识点,真正体系化!
由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新!
如果你觉得这些内容对你有帮助,可以扫码获取!!(备注Java获取)
总结:心得体会
既然选择这个行业,选择了做一个程序员,也就明白只有不断学习,积累实战经验才有资格往上走,拿高薪,为自己,为父母,为以后的家能有一定的经济保障。
学习时间都是自己挤出来的,短时间或许很难看到效果,一旦坚持下来了,必然会有所改变。不如好好想想自己为什么想进入这个行业,给自己内心一个答案。
面试大厂,最重要的就是夯实的基础,不然面试官随便一问你就凉了;其次会问一些技术原理,还会看你对知识掌握的广度,最重要的还是你的思路,这是面试官比较看重的。
最后,上面这些大厂面试真题都是非常好的学习资料,通过这些面试真题能够看看自己对技术知识掌握的大概情况,从而能够给自己定一个学习方向。包括上面分享到的学习指南,你都可以从学习指南里理顺学习路线,避免低效学习。
大厂Java架构核心笔记(适合中高级程序员阅读):
《互联网大厂面试真题解析、进阶开发核心学习笔记、全套讲解视频、实战项目源码讲义》点击传送门即可获取!
想进入这个行业,给自己内心一个答案。
面试大厂,最重要的就是夯实的基础,不然面试官随便一问你就凉了;其次会问一些技术原理,还会看你对知识掌握的广度,最重要的还是你的思路,这是面试官比较看重的。
最后,上面这些大厂面试真题都是非常好的学习资料,通过这些面试真题能够看看自己对技术知识掌握的大概情况,从而能够给自己定一个学习方向。包括上面分享到的学习指南,你都可以从学习指南里理顺学习路线,避免低效学习。
大厂Java架构核心笔记(适合中高级程序员阅读):
[外链图片转存中…(img-S4tuVBsB-1713712897026)]
《互联网大厂面试真题解析、进阶开发核心学习笔记、全套讲解视频、实战项目源码讲义》点击传送门即可获取!