性能优化之缓存篇

本文详细探讨了缓存的使用时机(如热点数据和读写比例)、不应使用缓存的情况、合理运用缓存的策略,以及在分布式缓存选择中对Ehcache、GuavaCache、Memcache和Redis的对比分析。还涉及缓存问题如数据一致性、预热、雪崩和穿透的解决方案。最后,提到了Java技术学习资源和面试准备建议。
摘要由CSDN通过智能技术生成

4.1 缓存的使用判断

什么时候使用缓存的判断其实比较简单,抓住两点就行了:

1、是不是热点数据?

所谓热点,一般是遵循二八定律,即百分之八十的访问集中在百分之二十的数据上。

2、是不是读比写多?

这个比例一般为2:1。

4.2 什么时候不应该使用缓存?

反过来就是了。

1、没有热点数据不要使用缓存,也没什么意义。

因为内存资源是比较宝贵的。

2、频繁修改的数据不要使用缓存。

因为可能写入后还来不及读取就已失效或被淘汰,并且容易产生脏读。

4.3 合理使用缓存

最后,最重要的是确认是否需要使用缓存?

确定了后,再选择合适的缓存工具及使用缓存的方式。

5. 缓存时常见的一些问题

使用缓存优点很多,但也存在一些很常见的问题。双刃之剑,就看怎么用了。

列举一些我们工作中常见的一些缓存问题,并给出至少一种解决方案。

5.1 缓存更新带来的数据不一致与脏读

缓存更新的常见策略有:

1、先更新数据库再更新缓存;

2、先更新数据库再删除缓存;

3、先删除缓存再更新数据库;

4、定时清理缓存;

5、有请求访问数据时,判断缓存是否过期,过期从数据库中刷新缓存。

在这几种方案中,如果修改缓存与数据库不在同一个事物中,就带来了数据不一致和脏读的问题。

对应方案1:先删除缓存再更新数据库,并且在同一个事物中。

对应方案2:缓存自动失效后,另外的异步线程进行缓存更新。

对应方案3:缓存更新在并发、分布式要考虑锁,redis天生就是单线程,比较有优势。

5.2 怎么做缓存预热

缓存预热是指在用户可访问服务之前,将热点数据加载到缓存的操作,这样可以有效避免上线后瞬时大流量造成系统不可用。

缓存预热的一般性策略:

1、开发个缓存刷新功能,手工刷新;

2、项目启动的时候自动进行加载(一般为字典表等数据量不大的数据);

3、设置个定时器,自动刷新缓存;

4、提前统计热点数据,事先批量加载到如redis这样缓存工具中。

5.3 缓存重建

缓存失效后,重建热点缓存,如果耗时较长,在重建过程中,性能、负载不好。

对应方案:

1、正常情况下,交错缓存失效时间,减轻缓存压力;

2、崩溃失效的情况下,可以使用带持久化功能的缓存来恢复,比如Redis;

3、如果是MongoDB则不太一样,它是采用mmap来将数据文件映射到内存中,所以当MongoDB重启时,这些映射的内存并不会清掉,不需要进行缓存重建与预热。

5.4 缓存雪崩与可用性

缓存雪崩:缓存在同一时间失效时,访问直达数据库层,可能导致DB挂掉、系统崩溃。

对应方案1:交错缓存失效时间或随机缓存失效时间。

对应方案2:主从热备(Redis Sentinel)。

对应方案3:集群/水平切分(Redis Cluster、一致性哈希)。

5.5 缓存穿透

缓存穿透:持续高并发访问某个不存在的Key。

对应方案1:空值缓存。

对应方案2:布隆过滤器(bloom filter) + bitmap。穷举可能访问的数据放入bitmap中,使用hash访问。

5.6 缓存击穿

缓存击穿:热点Key失效,高并发请求,直击数据库。

缓存击穿与缓存穿透很相似,不同点是是缓存击穿前访问的是真实的热点数据,只是在某一刹那失效了,造成了击穿的效果。

这样看,它其实也是缓存雪崩的一个特例。与雪崩的区别即在于击穿是对于特定的热点数据,而雪崩是全部数据。

对应方案:多级缓存及交错失效时间 + LRU 淘汰算法。

对于热点数据进行二级或多级缓存,并对于不同级别的缓存设定不同的失效时间,缓解雪崩。

此外可使用LRU的变种算法LRU-K缓存数据。

5.7 缓存降级

缓存降级是服务降级中的一环。

在访问量剧增,导致服务出现问题时,为了保证核心服务可用,防止发生缓存雪崩,可进行服务降级。

以redis为例,比较常见的做法就是,不去数据库查询,而是直接返回默认值给用户。

缓存降级也可根据日志级别进行预案设置。

6. 分布式缓存的选型

说了这么多缓存的原理与策略,说说我们在实际工作中应该怎么去做缓存选型。

以下就是常用的几种缓存工具。

6.1 Ehcache

Ehcache是纯Java开源的缓存框架,最早从hibernate发展而来,现在算是springboot中的官配缓存工具,整合简单。特点如下:

  • 快速,针对大型高并发系统场景,Ehcache的多线程机制有相应的优化改善;

  • 简单,很小的jar包,简单配置就可直接使用,单机场景下无需过多的其他服务依赖;

  • 支持多种的缓存策略,灵活;

  • 缓存数据有两级:内存和磁盘,与一般的本地内存缓存相比,有了磁盘的存储空间,将可以支持更大量的数据缓存需求;

  • 具有缓存和缓存管理器的侦听接口,能更简单方便的进行缓存实例的监控管理;

  • 支持多缓存管理器实例,以及一个实例的多个缓存区域。

6.2 Guava Cache

Guava Cache是Google开源的Java重用工具集库Guava里的一款缓存工具,特点如下:

  • 自动将entry节点加载进缓存结构中;

  • 当缓存的数据超过设置的最大值时,使用LRU算法移除;

  • 具备根据entry节点上次被访问或者写入时间计算它的过期机制;

  • 缓存的key被封装在WeakReference引用内;

  • 缓存的Value被封装在WeakReference或SoftReference引用内;

  • 统计缓存使用过程中命中率、异常率、未命中率等统计数据。

6.3 Memcache

memcache本身不支持分布式,是通过客户端的路由处理来达到分布式解决方案的目的。特点如下:

  • memcache使用预分配内存池的方式管理内存;

  • 所有数据存储在物理内存里;

  • 非阻塞IO复用模型,纯KV存取操作;

  • 多线程,效率高,会遇到锁等上下文切换问题;

  • 只支持简单KV数据类型;

  • 数据不支持持久化。

6.4 Redis

Redis是当前主流的高性能内存数据库,多用于存储缓存数据,并能实现轻量级的MQ功能。特点如下:

  • 临时申请空间,可能导致碎片;
    自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数Java工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年Java开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Java开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新!

如果你觉得这些内容对你有帮助,可以扫码获取!!(备注Java获取)

img

总结

对于面试还是要好好准备的,尤其是有些问题还是很容易挖坑的,例如你为什么离开现在的公司(你当然不应该抱怨现在的公司有哪些不好的地方,更多的应该表明自己想要寻找更好的发展机会,自己的一些现实因素,比如对于我而言是现在应聘的公司离自己的家更近,又或者是自己工作到达了迷茫期,想跳出迷茫期等等)

image

Java面试精选题、架构实战文档

整理不易,觉得有帮助的朋友可以帮忙点赞分享支持一下小编~

你的支持,我的动力;祝各位前程似锦,offer不断!
《互联网大厂面试真题解析、进阶开发核心学习笔记、全套讲解视频、实战项目源码讲义》点击传送门即可获取!

对于面试还是要好好准备的,尤其是有些问题还是很容易挖坑的,例如你为什么离开现在的公司(你当然不应该抱怨现在的公司有哪些不好的地方,更多的应该表明自己想要寻找更好的发展机会,自己的一些现实因素,比如对于我而言是现在应聘的公司离自己的家更近,又或者是自己工作到达了迷茫期,想跳出迷茫期等等)

[外链图片转存中…(img-zWkMD9yx-1713685770286)]

Java面试精选题、架构实战文档

整理不易,觉得有帮助的朋友可以帮忙点赞分享支持一下小编~

你的支持,我的动力;祝各位前程似锦,offer不断!
《互联网大厂面试真题解析、进阶开发核心学习笔记、全套讲解视频、实战项目源码讲义》点击传送门即可获取!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值