《基于超声的深度学习模型用于降低BI-RADS 4A乳腺病变的恶性率》论文笔记 MobileNet

《APPLICATIONOFDEEPLEARNINGTOREDUCETHERATEOFMALIGNANCY AMONGBI-RADS4ABREASTLESIONSBASEDONULTRASONOGRAPHY》
《基于超声的深度学习模型用于降低BI-RADS 4A乳腺病变的恶性率》
原文地址: 链接

摘要

本研究旨在开发一个基于超声(US)图像的深度学习模型,以降低在术前超声检查中被诊断为乳腺影像报告和数据系统(BI-RADS)4A类的乳腺病变的恶性率。共纳入了479例在术前超声检查中被诊断为BI-RADS 4A的乳腺病变病例,其中362例为良性病变,117例为恶性病变,恶性率为24.4%。超声图像从数据库服务器中获取,并按4:1的比例随机分为训练和测试队列。为了正确分类BI-RADS 4A类超声诊断的良性和恶性肿瘤,开发了四个深度学习模型,包括MobileNet、DenseNet121、Xception和Inception V3。通过受试者工作特征曲线下面积(AUROC)、准确率、灵敏度、特异性、阳性预测值(PPV)和阴性预测值(NPV)对深度学习模型的性能进行比较。同时,通过五折交叉验证评估模型的稳健性。在四个模型中,MobileNet模型在BI-RADS 4A乳腺病变的良性和恶性分类中表现最佳。MobileNet模型在测试队列中的AUROC、准确率、灵敏度、特异性、PPV和NPV分别为0.897、0.913、0.926、0.899、0.958和0.784。预计约有14.4%的患者在超声检查中可在MobileNet模型的帮助下升级为BI-RADS 4B类。MobileNet深度学习模型可以帮助降低BI-RADS 4A乳腺病变在术前超声检查中的恶性率,对临床医生在超声检查中识别可疑乳腺病变时具有重要参考价值。
关键词:深度学习、超声检查、乳腺影像报告与数据系统、乳腺肿瘤

简介

根据世界卫生组织国际癌症研究机构(IARC)2020年的报告,乳腺癌已经取代肺癌,成为全球最常见的恶性肿瘤,也是女性癌症相关死亡的主要原因。乳腺癌的早期诊断在改善预后方面起着至关重要的作用。与乳腺X线检查(MG)相比,超声检查(US)在检测乳腺导管内和结节性病变方面更为敏感,尤其是对于年轻或怀孕女性。在中国,考虑到乳腺X线检查对高密度乳腺组织的低敏感性,超声检查被认为与乳腺X线检查具有同等的重要性,临床医生通常将超声检查与乳腺X线检查结合,以便为可疑乳腺病变制定治疗方案。
2013年,美国放射学会(ACR)更新了超声成像的乳腺影像报告和数据系统(BI-RADS)。BI-RADS的词汇表帮助超声医生和乳腺外科医生标准化乳腺病变的恶性概率,并根据BI-RADS评分制定适当的治疗方案。因此,BI-RADS词汇表得到了广泛接受。然而,由于乳腺病变的高度异质性和多样性,临近BI-RADS评分的临界点模糊但非常重要,尤其是BI-RADS 3/4A和4A/4B的分界点。
在我们的乳腺癌中心,BI-RADS 4A是决定治疗策略的关键节点。对于BI-RADS 3类病变,外科医生通常建议随访或在门诊通过Mammotome系统进行微创手术,而对于BI-RADS 4A乳腺病变,通常会在日间手术病房进行外科切除。BI-RADS 4B类患者则接受住院治疗,准备处理恶性乳腺肿瘤。由于我们中心的BI-RADS 4A类病变不进行术前活检,超声医生对报告非常谨慎,因为这决定了临床决策。
在我们中心收集的统计数据表明,BI-RADS 4A类乳腺病变的恶性率约为20%到30%,远高于ACR推荐的2%到10%。这意味着我们中心大约20%的BI-RADS 4A乳腺病变被低估,可能会延误这些恶性肿瘤的治疗,术后14天才会提供石蜡病理结果。因此,与之前通过辅助方法将一部分BI-RADS 4A乳腺病变降级为BI-RADS 3的研究不同,我们的目的是将部分BI-RADS 4A乳腺病变升级为BI-RADS 4B,以降低BI-RADS 4A乳腺病变的恶性率。
超声图像的评估通常具有主观性,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值