题目描述
已知平面上四点P1、P2、P3、P4的坐标,分别为(X1,Y1)、(X2,Y2)、(X3,Y3)、(X4,Y4)
如果将P1P2连线的中点A、P2P3连线的中点B、P3P4连线的中点C以及P4P1连线的中点D连接为一个新的四边形,你能否计算出四边形ABCD的面积?
输入
P1、P2、P3、P4的坐标,每行两个值,横坐标在前,纵坐标在后,以空格分隔
每个坐标值均为整数,取值范围在[0,10000]之间,即:最小为0,最大为10000
输出
四边形ABCD的面积,保留两位小数
#include<stdio.h>
#include<math.h>
int main(){
double a[4][2];
double b[4][2];
for(int i = 0; i < 4; i++){
scanf("%lf %lf",&a[i][0],&a[i][1]);
}
for(int i = 0; i < 3; i++){
b[i][0] = (a[i][0] + a[i+1][0])/2;
b[i][1] = (a[i][1] + a[i+1][1])/2;
}
b[3][0] = (a[3][0] + a[0][0])/2;
b[3][1] = (a[3][1] + a[0][1])/2;
double c[3];
c[0] = sqrt(pow(b[0][0] - b[1][0],2) + pow(b[0][1] - b[1][1],2));
c[1] = sqrt(pow(b[1][0] - b[2][0],2) + pow(b[1][1] - b[2][1],2));
c[2] = sqrt(pow(b[0][0] - b[2][0],2) + pow(b[0][1] - b[2][1],2));
double p1 = 0;
for(int i = 0; i < 3; i++){
p1+=c[i];
}
double p;
p = p1 / 2.0;
double s;
s = sqrt(p * (p - c[0]) * (p - c[1]) * (p - c[2]));
printf("%.2f",s * 2.0);
}