四边形的面积

题目描述

已知平面上四点P1、P2、P3、P4的坐标,分别为(X1,Y1)、(X2,Y2)、(X3,Y3)、(X4,Y4)
如果将P1P2连线的中点A、P2P3连线的中点B、P3P4连线的中点C以及P4P1连线的中点D连接为一个新的四边形,你能否计算出四边形ABCD的面积?

输入

P1、P2、P3、P4的坐标,每行两个值,横坐标在前,纵坐标在后,以空格分隔
每个坐标值均为整数,取值范围在[0,10000]之间,即:最小为0,最大为10000

输出

四边形ABCD的面积,保留两位小数

#include<stdio.h>
#include<math.h>

int main(){
    double a[4][2];
    double b[4][2];
    for(int i = 0; i < 4; i++){
        scanf("%lf %lf",&a[i][0],&a[i][1]);
    }
    for(int i = 0; i < 3; i++){
        b[i][0] = (a[i][0] + a[i+1][0])/2;
        b[i][1] = (a[i][1] + a[i+1][1])/2;
    }
    b[3][0] = (a[3][0] + a[0][0])/2;
    b[3][1] = (a[3][1] + a[0][1])/2;
    double c[3];
    c[0] = sqrt(pow(b[0][0] - b[1][0],2) + pow(b[0][1] - b[1][1],2));
    c[1] = sqrt(pow(b[1][0] - b[2][0],2) + pow(b[1][1] - b[2][1],2));
    c[2] = sqrt(pow(b[0][0] - b[2][0],2) + pow(b[0][1] - b[2][1],2));
    double p1 = 0;
    for(int i = 0; i < 3; i++){
        p1+=c[i];
    }
    double p;
    p = p1 / 2.0;
    double s;
    s = sqrt(p * (p - c[0]) * (p - c[1]) * (p - c[2]));
    printf("%.2f",s * 2.0);
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值