-
字段情况:该表一共37个字段,不包含text等大型数据,最大为varchar(500),id字段为索引,且为递增。
-
数据量:5709294
-
MySQL版本:5.7.16 线下找一张百万级的测试表可不容易,如果需要自己测试的话,可以写shell脚本什么的插入数据进行测试。 以下的 sql 所有语句执行的环境没有发生改变,下面是基本测试结果:
select count(*) from orders_history;
返回结果:5709294
三次查询时间分别为:
-
8903 ms
-
8323 ms
-
8401 ms
一般的分页查询使用简单的 limit 子句就可以实现。limit 子句声明如下:
SELECT * FROM table LIMIT [offset,] rows | rows OFFSET offset
LIMIT 子句可以被用于指定 SELECT 语句返回的记录数。需注意以下几点:
-
第一个参数指定第一个返回记录行的偏移量,注意从
0
开始 -
第二个参数指定返回记录行的最大数目
-
如果只给定一个参数:它表示返回最大的记录行数目
-
第二个参数为 -1 表示检索从某一个偏移量到记录集的结束所有的记录行
-
初始记录行的偏移量是 0(而不是 1)
下面是一个应用实例:
select * from orders_history where type=8 limit 1000,10;
该条语句将会从表 orders_history 中查询 offset:1000
开始之后的10条数据,也就是第1001条到第1010条数据( 1001<=id<=1010
)。
数据表中的记录默认使用主键(一般为id)排序,上面的结果相当于:
select * from orders_history where type=8 order by id limit 10000,10;
三次查询时间分别为:
-
3040 ms
-
3063 ms
-
3018 ms
针对这种查询方式,下面测试查询记录量对时间的影响:
select * from orders_history where type=8 limit 10000,1;
select * from orders_history where type=8 limit 10000,10;
select * from orders_history where type=8 limit 10000,100;
select * from orders_history where type=8 limit 10000,1000;
select * from orders_history where type=8 limit 10000,10000;
三次查询时间如下:
-
查询1条记录:3072ms 3092ms 3002ms
-
查询10条记录:3081ms 3077ms 3032ms
-
查询100条记录:3118ms 3200ms 3128ms
-
查询1000条记录:3412ms 3468ms 3394ms
-
查询10000条记录:3749ms 3802ms 3696ms
另外我还做了十来次查询,从查询时间来看,基本可以确定,在查询记录量低于100时,查询时间基本没有差距,随着查询记录量越来越大,所花费的时间也会越来越多。
针对查询偏移量的测试:
select * from orders_history where type=8 limit 100,100;
select * from orders_history where type=8 limit 1000,100;
select * from orders_history where type=8 limit 10000,100;
select * from orders_history where type=8 limit 100000,100;
select * from orders_history where type=8 limit 1000000,100;
三次查询时间如下:
-
查询100偏移:25ms 24ms 24ms
-
查询1000偏移:78ms 76ms 77ms
-
查询10000偏移:3092ms 3212ms 3128ms
-
查询100000偏移:3878ms 3812ms 3798ms
-
查询1000000偏移:14608ms 14062ms 14700ms
随着查询偏移的增大,尤其查询偏移大于10万以后,查询时间急剧增加。
这种分页查询方式会从数据库第一条记录开始扫描,所以越往后,查询速度越慢,而且查询的数据越多,也会拖慢总查询速度。
这种方式先定位偏移位置的 id,然后往后查询,这种方式适用于 id 递增的情况。
select * from orders_history where type=8 limit 100000,1;
select id from orders_history where type=8 limit 100000,1;
select * from orders_history where type=8 and
id>=(select id from orders_history where type=8 limit 100000,1)
limit 100;
select * from orders_history where type=8 limit 100000,100;
4条语句的查询时间如下:
-
第1条语句:3674ms
-
第2条语句:1315ms
-
第3条语句:1327ms
-
第4条语句:3710ms
针对上面的查询需要注意:
-
比较第1条语句和第2条语句:使用 select id 代替 select * 速度增加了3倍
-
比较第2条语句和第3条语句:速度相差几十毫秒
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数前端工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年Web前端开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上前端开发知识点,真正体系化!
由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新!
如果你觉得这些内容对你有帮助,可以扫码获取!!(备注:前端)
最后
资料过多,篇幅有限,需要文中全部资料可以点击这里免费获取前端面试资料PDF完整版!
自古成功在尝试。不尝试永远都不会成功。勇敢的尝试是成功的一半。
笔记、源码讲义、实战项目、讲解视频,并且会持续更新!**
如果你觉得这些内容对你有帮助,可以扫码获取!!(备注:前端)
[外链图片转存中…(img-8bxMH8Nr-1713605138886)]
最后
[外链图片转存中…(img-8CrYzBbg-1713605138886)]
[外链图片转存中…(img-zoHVZRKy-1713605138887)]
资料过多,篇幅有限,需要文中全部资料可以点击这里免费获取前端面试资料PDF完整版!
自古成功在尝试。不尝试永远都不会成功。勇敢的尝试是成功的一半。