大数据:Hadoop基础常识hive,hbase,MapReduce,Spark

本文介绍了Hadoop框架(HDFS、副本策略、MapReduce局限性)以及其扩展如Hive用于SQL查询、HBase的NoSQL数据库特性,还有YARN资源管理框架和Spark的内存计算优势。同时提到了如何利用这些技术进行大数据处理和Android移动开发的学习资源。
摘要由CSDN通过智能技术生成

HDFS把文件切分成block块进行存储(默认block大小尺寸为128m),然后这些block块被复制到多个计算机中(DataNode)。这有一个容错机制,副本策略,默认一块数据会有三个block,当前机器存储一份(数据本地化),另外一个机架存储一份,该机架的不同机器存储一份。

Hadoop在处理大数据时候特别需要注意:

1、    非常适合处理超大规模的数据集(TB,PB量级),非常不适合处理大量小文件。

2、    Hadoop一次写入,多次读写。Hadoop不支持随机修改文件。

3、Hadoop数据处理高延迟,数据的实时性不高。原因很显然,因为处理的数据规模非常大且是以分布式方式存储,读写访问需要花费更多时间。

Hadoop特点总结:不适合低延迟数据访问、无法高效存储大量小文件、不支持多用户写入及任意修改文件。

Hive

简单说,Hive提供了一种独特的SQL查询语句,使得熟悉SQL的开发者通过编写SQL语句即可访问Hadoop存储的海量数据,通过hive的SQL查询语句,开发者可以在一定程度上绕过MapReduce。hive可以用SQL的语言转化成Map Reduce任务对hdfs数据的查询分析。hive的使用者无需写Map Reduce任务,掌握SQL可完成查询分析工作。

Hbase

Hbase是一种NoSQL数据库。HBase是非关系型数据库(Nosql),在某些业务场景下,数据存储查询在Hbase的使用效率更高。

Yarn

Yarn是分布式集群资源管理框架。

MapReduce的Shuffle

MapReduce在任务结束后将数据存放到硬盘中

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值