自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(12)
  • 收藏
  • 关注

原创 深度学习的一些简单问题及解答

组成,还可能包含批量归一化层、激活函数层、Dropout 层等。

2025-10-29 18:14:13 639

原创 什么是计算机视觉?

定义:通过计算机算法处理图像、视频等视觉数据,实现对三维现实世界的感知、理解与交互。核心目标:从像素级的原始数据,转化为语义级的信息(如识别物体类别、定位目标位置、理解场景关系、预测运动轨迹)。与人类视觉的区别:人类视觉依赖大脑的先天认知与后天经验,计算机视觉则通过数学模型、数据训练和算法推理,实现自动化的视觉分析。

2025-10-28 15:18:44 883

原创 深度理解灰度变换

1.灰度图像的每个像素仅包含亮度信息,灰度值范围通常是 0(纯黑)到 255(纯白)。2.灰度变换本质是单像素映射操作:对图像中每个像素的灰度值 r,通过一个变换函数 s=T(r),将其映射为新的灰度值 s。3.核心特点:只改变像素的灰度大小,不改变像素的空间位置,也不涉及相邻像素的信息(区别于滤波、卷积等操作)。

2025-10-28 15:05:12 610

原创 什么是鲁棒性?

在深度学习中,模型训练通常基于 “理想数据”(如干净的 MNIST 图像),但实际应用中数据会存在各种问题。鲁棒性强的模型,不会因为这些问题大幅掉性能;鲁棒性弱的模型则容易 “失灵”。比如你之前训练的 MNIST 数字识别模型:(1)若输入图像有轻微模糊、噪声,鲁棒性强的模型仍能正确识别;(2)鲁棒性弱的模型可能直接把 “3” 误判成 “5”。鲁棒性本质是模型的 “抗干扰能力”,决定了模型从 “实验室” 走向 “实际应用” 的可行性。对 MNIST 这类简单任务,鲁棒性可能影响不大;

2025-10-23 09:47:13 378

原创 RNN实现情感分类-加载预训练词向量(关键步骤及代码解析)

下载 GloVe 预训练词向量压缩包(如),其中包含不同维度的词向量文件(如,表示每个单词用 100 维向量表示)。逐行读取词向量文件,每行按 “单词 + 向量值(多个浮点数)” 的格式解析,提取出单词列表(tokens)和对应的向量列表(embeddings为应对 “词表外单词(<unk>)” 和 “文本填充(<pad>)” 需求,给向量列表额外添加两个特殊向量(<unk>用随机向量,<pad>用全 0 向量),同时单词列表也加入这两个特殊符号。用。

2025-10-20 15:59:19 173

原创 RNN实现情感分类:网络构建

假设一段文本,经处理后转化为长度为20的索引序列,词汇表大小为10000,选择的词向量维度为100,一次处理32个这样的文本样本(即批次大小为32),情感分类为二分类(如正面和负面)。层输出的(32,20,100)形状的词向量,输出是最后一个时间步形状为(32,128)的隐藏状态(这里假设 LSTM 隐藏层维度为128),该状态捕捉了整个序列的特征。:输入是形状为(32,20)的文本索引序列,输出是形状为(32,20,100)的词向量,把每个索引转换成了100维的向量。

2025-10-20 10:55:16 187

原创 基于门控的循环神经网络

(W_c\):候选细胞状态对\(x_t\)的权重矩阵;\(U_c\):候选细胞状态对\(h_{t-1}\)的权重矩阵;\(W_i\):输入门对当前输入\(x_t\)的权重矩阵;\(U_i\):输入门对上一时刻隐藏状态\(h_{t-1}\)的权重矩阵;\(W_f\):遗忘门对\(x_t\)的权重矩阵;\(U_f\):遗忘门对\(h_{t-1}\)的权重矩阵;\(o_t\):输出门输出;\(W_o\):输出门对\(x_t\)的权重矩阵;\(U_o\):输出门对\(h_{t-1}\)的权重矩阵;

2025-10-15 11:09:56 357

原创 现代经典卷积架构——AlexNet

在开始前我想让大家先知道什么是现代经典卷积架构:简单说,现代经典卷积架构就是给传统 “卷积网络” 装了不同的 “黑科技插件”,让它又快又聪明,还能解决以前解决不了的难题。(3)FC8:输入 4096 个特征,输出 1000 个特征(对应 ImageNet 数据集的 1000 个类别,比如 “猫”“狗”“汽车” 等)。(3)输出特征图:经过计算,输出 55×55大小的特征图,且有 96 个这样的特征图(因为用了 96 个不同的卷积核,每个卷积核提取不同的特征)。(1)卷积核:用 3×3的卷积核。

2025-10-09 10:22:25 917

原创 Mindspore安装流程

MindSpore的安装步骤。首先,配置环境变量;虚拟环境创建完成后,在新创建的虚拟环境中,安装MindSpore,可以使用清华的镜像源;如果在安装的过程中出现缺少模块的问题,换用conda命令去安装conda install mindspore-cpu -c mindspore -c conda-forge ,这样大概率就没有问题了;关于MindSpore的下载的问题,最重要的就是Python和Anaconda的版本问题,如Python使用版本要在3.9以上,Anaconda建议使用最新的版本。

2025-09-25 14:29:14 130

原创 Pandas

是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔型值)。2.Pandas 可以对各种数据进行运算操作,比如归并、再成形、选择,还有数据清洗和数据加工特征。是一种类似于一维数组的对象,它由一组数据(各种 Numpy 数据类型)以及一组与之相关的数据标签(即索引)组成。Pandas 的主要数据结构是 Series (一维数据)与 DataFrame(二维数据)。2.数据转换:改变数据的形状、结构或格式。1.数据清洗:处理缺失数据、重复数据等。四、pandas特点。

2025-09-25 11:27:26 709

原创 机器学习算法的优缺点

对多重共线性敏感,无法捕捉特征间复杂的非线性和交互作用,当自变量高度相关时,模型稳定性和可靠性受影响。(1)优点:通过集成多个弱学习器,有效降低方差和偏差,提升模型性能和泛化能力;对数据的适应性强,能处理各种类型的数据;(2)缺点:需要预先指定聚类数 K,K 值选择困难,不同 K 值结果差异大;(2)缺点:特征独立性假设在实际中往往难以满足,当特征间存在关联时,分类效果会降低;(1)优点:能有效降低数据维度,去除噪声和冗余信息,提高后续算法效率;(2)缺点:模型复杂度较高,计算量大,训练时间长;

2025-09-25 09:16:25 262

原创 朴素贝叶斯的归纳与总结

Ⅰ.分类问题可总结为:计算给定样本 X 时假设 H(样本 X 属于类别 C)成立的概率 P(H∣X),其中涉及假设 H、样本数据 X 的先验概率,以及条件 X 下 H 的后验概率、给定 H 时 X 的后验概率这些概念。Ⅰ.朴素贝叶斯分类方法是利用贝叶斯定理来预测一个未知类别的样本属于各个类别的可能性,选择其中可能性最大的一个类别作为该样本的最终类别。b.但是随着训练集的增大,高偏差的分类器并不能训练处准确的模型,所以低偏差/高方差的分类器会胜出。计算邮件是垃圾邮件或合法邮件的概率,区概率大的为预测结果。

2025-09-22 16:33:02 409

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除