【RNN入门到实战】LSTM从入门到实战——实现空气质量预测

先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7

深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年最新Python全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
img
img



既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上Python知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以添加V获取:vip1024c (备注Python)
img

正文

输出层门

​ 作用对象:隐层 h t h_t ht​

​ 作用:确定输出什么值。

​ 操作步骤:

​ 步骤一:通过sigmoid 层来确定细胞状态的哪个部分将输出。

​ 步骤二:把细胞状态通过 tanh 进行处理,并将它和 sigmoid 门的输出相乘,最终我们仅仅会输出我们确定输出的那部分。

其示意图如下所示:

在这里插入图片描述

动图演示

在这里插入图片描述

实战——使用LSTM实现空气质量预测

=============================================================================

数据来源自位于北京的美国大使馆在2010年至2014年共5年间每小时采集的天气及空气污染指数。

数据集包括日期、PM2.5浓度、露点、温度、风向、风速、累积小时雪量和累积小时雨量。原始数据中完整的特征如下:

1.No 行数

2.year 年

3.month 月

4.day 日

5.hour 小时

6.pm2.5 PM2.5浓度

7.DEWP 露点

8.TEMP 温度

9.PRES 大气压

10.cbwd 风向

11.lws 风速

12.ls 累积雪量

13.lr 累积雨量

我们可以利用此数据集搭建预测模型,利用前一个或几个小时的天气条件和污染数据预测下一个(当前)时刻的污染程度。

数据处理


首先,我们必须清洗数据。以下是原始数据集的前几行。

No year month day hour pm2.5 DEWP TEMP PRES cbwd Iws Is Ir

0 1 2010 1 1 0 NaN -21 -11.0 1021.0 NW 1.79 0 0

1 2 2010 1 1 1 NaN -21 -12.0 1020.0 NW 4.92 0 0

2 3 2010 1 1 2 NaN -21 -11.0 1019.0 NW 6.71 0 0

3 4 2010 1 1 3 NaN -21 -14.0 1019.0 NW 9.84 0 0

4 5 2010 1 1 4 NaN -20 -12.0 1018.0 NW 12.97 0 0

5 6 2010 1 1 5 NaN -19 -10.0 1017.0 NW 16.10 0 0

6 7 2010 1 1 6 NaN -19 -9.0 1017.0 NW 19.23 0 0

7 8 2010 1 1 7 NaN -19 -9.0 1017.0 NW 21.02 0 0

8 9 2010 1 1 8 NaN -19 -9.0 1017.0 NW 24.15 0 0

9 10 2010 1 1 9 NaN -20 -8.0 1017.0 NW 27.28 0 0

数据理清的步骤:

1、将year, month, day, hour四列整合为一个日期时间。

2、删除No列,这个列对于数据预测没有作用,如果有作用说明见鬼了。

3、将数据集中所有的NaN设置为0,NaN没有办法用来计算。

4、删除前24行,前24行的pm2.5没有记录,留着没有用。

完整的代码如下:

from pandas import read_csv

from datetime import datetime

load data

def parse(x):

return datetime.strptime(x, ‘%Y %m %d %H’)

读取数据,将year, month, day, hour四列合并成一列。

dataset = read_csv(‘raw.csv’, parse_dates = [[‘year’, ‘month’, ‘day’, ‘hour’]], index_col=0, date_parser=parse)

删除No列

dataset.drop(‘No’, axis=1, inplace=True)

修改列名

dataset.columns = [‘pollution’, ‘dew’, ‘temp’, ‘press’, ‘wnd_dir’, ‘wnd_spd’, ‘snow’, ‘rain’]

dataset.index.name = ‘date’

print(dataset)

将所有的NaN设置为0

dataset[‘pollution’].fillna(0, inplace=True)

删除前24行

dataset = dataset[24:]

浏览前5行数据

print(dataset.head(5))

save to file

dataset.to_csv(‘pollution.csv’)

加载了“pollution.csv”文件,并对除了类别型特性“风速”的每一列数据分别绘图。

dataset = pd.read_csv(‘pollution.csv’, header=0, index_col=0)

values = dataset.values

specify columns to plot

groups = [0, 1, 2, 3, 5, 6, 7]

i = 1

plot each column

pyplot.figure(figsize=(10, 10))

for group in groups:

pyplot.subplot(len(groups), 1, i)

pyplot.plot(values[:, group])

pyplot.title(dataset.columns[group], y=0.5, loc=‘right’)

i += 1

pyplot.show()

运行上面的代码,并对7个变量在5年的范围内绘图。 在这里插入图片描述

利用sklearn的预处理模块对类别特征“风向”进行编码,当然也可以对该特征进行one-hot编码。 接着对所有的特征进行归一化处理,然后将数据集转化为有监督学习问题,同时将需要预测的当前时刻(t)的天气条件特征移除,代码如下:

def series_to_supervised(data, n_in=1, n_out=1, dropnan=True):

convert series to supervised learning

n_vars = 1 if type(data) is list else data.shape[1]

df = pd.DataFrame(data)

cols, names = list(), list()

input sequence (t-n, … t-1)

for i in range(n_in, 0, -1):

cols.append(df.shift(i))

names += [(‘var%d(t-%d)’ % (j + 1, i)) for j in range(n_vars)]

forecast sequence (t, t+1, … t+n)

for i in range(0, n_out):

cols.append(df.shift(-i))

if i == 0:

names += [(‘var%d(t)’ % (j + 1)) for j in range(n_vars)]

else:

names += [(‘var%d(t+%d)’ % (j + 1, i)) for j in range(n_vars)]

put it all together

agg = pd.concat(cols, axis=1)

agg.columns = names

drop rows with NaN values

if dropnan:

agg.dropna(inplace=True)

return agg

load dataset

dataset = pd.read_csv(‘pollution.csv’, header=0, index_col=0)

values = dataset.values

integer encode direction

encoder = LabelEncoder()

print(values[:, 4])

values[:, 4] = encoder.fit_transform(values[:, 4])

print(values[:, 4])

ensure all data is float

values = values.astype(‘float32’)

normalize features

scaler = MinMaxScaler(feature_range=(0, 1))

scaled = scaler.fit_transform(values)

frame as supervised learning

reframed = series_to_supervised(scaled, 1, 1)

drop columns we don’t want to predict

reframed.drop(reframed.columns[[9, 10, 11, 12, 13, 14, 15]], axis=1, inplace=True)

print(reframed.head())

构造模型


首先,我们需要将处理后的数据集划分为训练集和测试集。为了加速模型的训练,我们仅利用第一年数据进行训练,然后利用剩下的4年进行评估。

下面的代码将数据集进行划分,然后将训练集和测试集划分为输入和输出变量,最终将输入(X)改造为LSTM的输入格式,即[samples,timesteps,features]。

split into train and test sets

values = reframed.values

n_train_hours = 365 * 24

train = values[:n_train_hours, :]

test = values[n_train_hours:, :]

split into input and outputs

train_X, train_y = train[:, :-1], train[:, -1]

test_X, test_y = test[:, :-1], test[:, -1]

reshape input to be 3D [samples, timesteps, features]

train_X = train_X.reshape((train_X.shape[0], 1, train_X.shape[1]))

test_X = test_X.reshape((test_X.shape[0], 1, test_X.shape[1]))

print(train_X.shape, train_y.shape, test_X.shape, test_y.shape)

运行上述代码打印训练集和测试集的输入输出格式,其中9K小时数据作训练集,35K小时数据作测试集。

(8760, 1, 8) (8760,) (35039, 1, 8) (35039,)

现在可以搭建LSTM模型了。 LSTM模型中,隐藏层有50个神经元,输出层1个神经元(回归问题),输入变量是一个时间步(t-1)的特征,损失函数采用Mean Absolute Error(MAE),优化算法采用Adam,模型采用50个epochs并且每个batch的大小为72。

最后,在fit()函数中设置validation_data参数,记录训练集和测试集的损失,并在完成训练和测试后绘制损失图。

checkpointer = ModelCheckpoint(filepath=‘best_model.hdf5’, monitor=‘val_loss’, verbose=1, save_best_only=True,

mode=‘min’)

reduce = ReduceLROnPlateau(monitor=‘val_loss’, patience=10, verbose=1, factor=0.5, min_lr=1e-6)

model = Sequential()

model.add(LSTM(50, input_shape=(train_X.shape[1], train_X.shape[2])))

model.add(Dense(1))

model.compile(loss=‘mae’, optimizer=‘adam’)

fit network

history = model.fit(train_X, train_y, epochs=300, batch_size=64, validation_data=(test_X, test_y), verbose=1,

callbacks=[checkpointer, reduce],

shuffle=True)

plot history

pyplot.plot(history.history[‘loss’], label=‘train’)

pyplot.plot(history.history[‘val_loss’], label=‘test’)

pyplot.legend()

pyplot.show()

模型评估


接下里我们对模型效果进行评估。

值得注意的是:需要将预测结果和部分测试集数据组合然后进行比例反转(invert the scaling),同时也需要将测试集上的预期值也进行比例转换。

(We combine the forecast with the test dataset and invert the scaling. We also invert scaling on the test dataset with the expected pollution numbers.)

至于在这里为什么进行比例反转,是因为我们将原始数据进行了预处理(连同输出值y),此时的误差损失计算是在处理之后的数据上进行的,为了计算在原始比例上的误差需要将数据进行转化。同时笔者有个小Tips:就是反转时的矩阵大小一定要和原来的大小(shape)完全相同,否则就会报错。

通过以上处理之后,再结合RMSE(均方根误差)计算损失。

yhat = model.predict(test_X)

test_X = test_X.reshape((test_X.shape[0], test_X.shape[2]))

invert scaling for forecast

inv_yhat = concatenate((yhat, test_X[:, 1:]), axis=1)

inv_yhat = scaler.inverse_transform(inv_yhat)

inv_yhat = inv_yhat[:, 0]

invert scaling for actual

inv_y = scaler.inverse_transform(test_X)

inv_y = inv_y[:, 0]

calculate RMSE

rmse = sqrt(mean_squared_error(inv_y, inv_yhat))

print(‘Test RMSE: %.3f’ % rmse)

完整代码


import pandas as pd

from datetime import datetime

from matplotlib import pyplot

from sklearn.preprocessing import LabelEncoder, MinMaxScaler

from sklearn.metrics import mean_squared_error

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense

from tensorflow.keras.layers import LSTM

from numpy import concatenate

from math import sqrt

load data

def parse(x):

return datetime.strptime(x, ‘%Y %m %d %H’)

def read_raw():

dataset = pd.read_csv(‘raw.csv’, parse_dates=[[‘year’, ‘month’, ‘day’, ‘hour’]], index_col=0, date_parser=parse)

一、Python所有方向的学习路线

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

img
img

二、Python必备开发工具

工具都帮大家整理好了,安装就可直接上手!img

三、最新Python学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。

img

四、Python视频合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

img

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。img

六、面试宝典

在这里插入图片描述

在这里插入图片描述

简历模板在这里插入图片描述

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加V获取:vip1024c (备注python)
img

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
6c1.png)

六、面试宝典

在这里插入图片描述

在这里插入图片描述

简历模板在这里插入图片描述

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加V获取:vip1024c (备注python)
[外链图片转存中…(img-YDxYKZuk-1713213792231)]

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值