Python参考书籍介绍,进一步提高Python基础_python图书简介

本文提供了一份针对Python编程初学者的书籍推荐清单,涵盖入门、进阶、数据库、Linux/运维、Web框架、爬虫、数据分析、机器学习等各个阶段,强调实战项目和系统学习的重要性,以及在线学习资源的筛选与计划制定。
摘要由CSDN通过智能技术生成

说明:以下数据参考了主要的招聘门户网站。

img

img

如果弄清了自己将来要做的方向,就可以开始有针对性的学习了,下面给大家一个推荐书籍的清单。

1. 入门读物

  • 《Python基础教程》(Beginning Python From Novice to Professional)
  • 《Python学习手册》(Learning Python)
  • 《Python编程》(Programming Python)
  • 《Python编程从入门到实践》(Python Crash Course)
  • 《Python Cookbook》

2. 进阶读物

  • 《软件架构 - Python语言实现》(Software Architecture with Python)
  • 《流畅的Python》(Fluent Python)
  • 《Python设计模式》(Learning Python Design Patterns)
  • 《Python高级编程》(Expert Python Programming)
  • 《Python性能分析与优化》(Mastering Python High Performance)

3. 数据库相关

  • 《MySQL必知必会》(MySQL Crash Course)
  • 《深入浅出MySQL - 数据库开发、优化与管理维护》
  • 《MongoDB权威指南》(MongoDB: The Definitive Guide)
  • 《Redis实战》(Redis in Action)
  • 《Redis开发与运维》

4. Linux / Shell / Docker / 运维

  • 《鸟哥的Linux私房菜》
  • 《Linux命令行与shell脚本编程大全》(Linux Command Line and Shell Scripting Bible)
  • 《Python自动化运维:技术与最佳实践》
  • 《第一本Docker书》(The Docker Book)
  • 《Docker经典实例》(Docker Cookbook)

5. Django / Flask / Tornado

  • 《Django基础教程》(Tango with Django)
  • 《轻量级Django》(Lightweight Django)
  • 《精通Django》(Mastering Django: Core)
  • 《Python Web开发:测试驱动方法》(Test-Driven Development with Python)
  • 《Two Scoops of Django: Best Practice of Django 1.8》
  • 《Flask Web开发:基于Python的Web应用开发实战》(Flask Web Development: Developing Web Applications with Python)
  • 《深入理解Flask》(Mastering Flask)
  • 《Introduction to Tornado》

6. 爬虫开发

  • 《用Python写网络爬虫》(Web Scraping with Python)
  • 《精通Python爬虫框架Scrapy》(Learning Scrapy)
  • 《Python网络数据采集》(Web Scraping with Python)
  • 《Python爬虫开发与项目实战》
  • 《Python 3网络爬虫开发实战》

7. 数据分析

  • 《利用Python进行数据分析》(Python for Data Analysis)
  • 《Python数据科学手册》(Python Data Science Handbook)
  • 《Python金融大数据分析》(Python for Finance)
  • 《Python数据可视化编程实战》(Python Data Visualization Cookbook)
  • 《Python数据处理》(Data Wrangling with Python)

8. 机器学习

  • 《Python机器学习基础教程》(Introduction to Machine Learning with Python)
  • 《Python机器学习实践指南》(Python Machine Learning Blueprints)
  • 《Python机器学习实践:测试驱动的开发方法》(Thoughtful Machine Learning with Python A Test Driven Approach)
  • 《Python机器学习经典实例》(Python Machine Learning Cookbook)
  • 《TensorFlow:实战Google深度学习框架》

9. 其他书籍

  • 《Pro Git》
  • 《Selenium自动化测试 - 基于Python语言》(Learning Selenium Testing Tools with Python)
  • 《Selenium自动化测试之道》
  • 《Scrum敏捷软件开发》(Software Development using Scrum)
  • 《高效团队开发 - 工具与方法》

当然学习编程,最重要的通过项目实战来提升自己的综合能力,Github上有大量的优质开源项目,其中不乏优质的Python项目。有一个名为“ awesome-python-applications”的项目对这些优质的资源进行了归类并提供了传送门,大家可以了解下。如果自学能力不是那么强,可以通过网络上免费或者付费的视频课程来学习对应的知识;如果自律性没有那么强,那就只能建议花钱参加培训班了,因为花钱在有人监督的环境下学习对很多人来说确实是一个捷径,但是要记得:“师傅领进门,修行靠各人”。选择自己热爱的东西并全力以赴,不要盲目的跟风学习,这一点算是过来人的忠告吧。

读者福利:知道你对Python感兴趣,便准备了这套python学习资料

对于0基础小白入门:

如果你是零基础小白,想快速入门Python是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案

包括:Python激活码+安装包、Python web开发,Python爬虫,Python数据分析,人工智能、机器学习等习教程。带你从零基础系统性的学好Python!

零基础Python学习资源介绍

现在能在网上找到很多很多的学习资源,有免费的也有收费的,当我拿到1套比较全的学习资源之前,我并没着急去看第1节,我而是去审视这套资源是否值得学习,有时候也会去问一些学长的意见,如果可以之后,我会对这套学习资源做1个学习计划,我的学习计划主要包括规划图和学习进度表。

分享给大家这份我薅到的免费视频资料,质量还不错,大家可以跟着学习

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里无偿获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值